Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
SummaryDouble-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
DNA double-strand breaks (DSBs) are among the most lethal types of DNA damage and frequently cause genome instability. Sequencing-based methods for mapping DSBs have been developed but they allow measurement only of relative frequencies of DSBs between loci, which limits our understanding of the physiological relevance of detected DSBs. Here we propose quantitative DSB sequencing (qDSB-Seq), a method providing both DSB frequencies per cell and their precise genomic coordinates. We induce spike-in DSBs by a site-specific endonuclease and use them to quantify detected DSBs (labeled, e.g., using i-BLESS). Utilizing qDSB-Seq, we determine numbers of DSBs induced by a radiomimetic drug and replication stress, and reveal two orders of magnitude differences in DSB frequencies. We also measure absolute frequencies of Top1-dependent DSBs at natural replication fork barriers. qDSB-Seq is compatible with various DSB labeling methods in different organisms and allows accurate comparisons of absolute DSB frequencies across samples.
Background Studies of the gut microbiome are becoming increasingly important. Such studies require stool collections that can be processed or frozen in a timely manner so as not to alter the microbial content. Due to the logistical difficulties of home-based stool collection, there has been a challenge in selecting the appropriate sample collection technique and comparing results from different microbiome studies. Thus, we compared stool collection and two alternative clinic-based fecal microbiome collection techniques, including a newer glove-based collection method. Results We prospectively enrolled 22 adult men from our prostate cancer screening cohort SABOR (San Antonio Biomarkers of Risk for prostate cancer) in San Antonio, TX, from 8/2018 to 4/2019. A rectal swab and glove tip sample were collected from each participant during a one-time visit to our clinics. A single stool sample was collected at the participant’s home. DNA was isolated from the fecal material and 16 s rRNA sequencing of the V1-V2 and V3-V4 regions was performed. We found the gut microbiome to be similar in richness and evenness, noting no differences in alpha diversity among the collection methods. The stool collection method, which remains the gold-standard method for the gut microbiome, proved to have different community composition compared to swab and glove tip techniques (p< 0.001) as measured by Bray-Curtis and unifrac distances. There were no significant differences in between the swab and glove tip samples with regard to beta diversity (p> 0.05). Despite differences between home-based stool and office-based fecal collection methods, we noted that the distance metrics for the three methods cluster by participant indicating within-person similarities. Additionally, no taxa differed among the methods in a Linear Discriminant Analysis Effect Size (LEfSe) analysis comparing all-against-all sampling methods. Conclusion The glove tip method provides similar gut microbiome results as rectal swab and stool microbiome collection techniques. The addition of a new office-based collection technique could help easy and practical implementation of gut microbiome research studies and clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.