Transient periods of synchronization of oscillating neuronal discharges in the frequency range 30-80 Hz (gamma oscillations) have been proposed to act as an integrative mechanism that may bring a widely distributed set of neurons together into a coherent ensemble that underlies a cognitive act. Results of several experiments in animals provide support for this idea. In humans, gamma oscillations have been described both on the scalp (measured by electroencephalography and magnetoencephalography) and in intracortical recordings, but no direct participation of synchrony in a cognitive task has been demonstrated so far. Here we record electrical brain activity from subjects who are viewing ambiguous visual stimuli (perceived either as faces or as meaningless shapes). We show for the first time, to our knowledge, that only face perception induces a long-distance pattern of synchronization, corresponding to the moment of perception itself and to the ensuing motor response. A period of strong desynchronization marks the transition between the moment of perception and the motor response. We suggest that this desynchronization reflects a process of active uncoupling of the underlying neural ensembles that is necessary to proceed from one cognitive state to another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.