In non-human mammals, the neuropeptide oxytocin is a key mediator of complex emotional and social behaviors, including attachment, social recognition, and aggression. Oxytocin reduces anxiety and impacts on fear conditioning and extinction. Recently, oxytocin administration in humans was shown to increase trust, suggesting involvement of the amygdala, a central component of the neurocircuitry of fear and social cognition that has been linked to trust and highly expresses oxytocin receptors in many mammals. However, no human data on the effects of this peptide on brain function were available. Here, we show that human amygdala function is strongly modulated by oxytocin. We used functional magnetic resonance imaging to image amygdala activation by fear-inducing visual stimuli in 15 healthy males after double-blind crossover intranasal application of placebo or oxytocin. Compared with placebo, oxytocin potently reduced activation of the amygdala and reduced coupling of the amygdala to brainstem regions implicated in autonomic and behavioral manifestations of fear. Our results indicate a neural mechanism for the effects of oxytocin in social cognition in the human brain and provide a methodology and rationale for exploring therapeutic strategies in disorders in which abnormal amygdala function has been implicated, such as social phobia or autism.
This study was conducted to explore the relationship between emotion recognition and affective Theory of Mind (ToM). Forty subjects performed a facial emotion recognition and an emotional intention recognition task (affective ToM) in an event-related fMRI study. Conjunction analysis revealed overlapping activation during both tasks. Activation in some of these conjunctly activated regions was even stronger during affective ToM than during emotion recognition, namely in the inferior frontal gyrus, the superior temporal sulcus, the temporal pole, and the amygdala. In contrast to previous studies investigating ToM, we found no activation in the anterior cingulate, commonly assumed as the key region for ToM. The results point to a close relationship of emotion recognition and affective ToM and can be interpreted as evidence for the assumption that at least basal forms of ToM occur by an embodied, non-cognitive process.
Patients with borderline personality disorder (BPD) have severe problems in social interactions that might be caused by deficits in social cognition. Since the findings about social-cognitive abilities in BPD are inhomogeneous, ranging from deficits to superior abilities, we aimed to investigate the neuronal basis of social cognition in BPD. We applied a paradigm with three social cognition tasks, differing in their complexity: basal processing of faces with a neutral expression, recognition of emotions, and attribution of emotional intentions (affective ToM). A total of 13 patients with BPD and 13 healthy matched controls (HCs) were included in a functional magnet resonance imaging study. BPD patients showed no deficits in social cognition on the behavioral level. However, while HCs showed increasing activation in areas of the mirror neuron system with increasing complexity in the social-cognitive task, BPD patients had hypoactivation in these areas and hyperactivation in the amygdala which were not modulated by task complexity. This activation pattern seems to reflect an enhanced emotional approach in the processing of social stimuli in BPD that allows good performance in standardized social-cognitive tasks, but might be the basis of social-cognitive deficits in real-life social interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.