Although several microtubule-targeting drugs are in clinical use, there remains a need to identify novel agents that can overcome the limitations of current therapies, including acquired and innate drug resistance and undesired side effects. In this study, we show that ELR510444 has potent microtubuledisrupting activity, causing a loss of cellular microtubules and the formation of aberrant mitotic spindles and leading to mitotic arrest and apoptosis of cancer cells. ELR510444 potently inhibited cell proliferation with an IC 50 value of 30.9 nM in MDA-MB-231 cells, inhibited the rate and extent of purified tubulin assembly, and displaced colchicine from tubulin, indicating that the drug directly interacts with tubulin at the colchicine-binding site. ELR510444 is not a substrate for the P-glycoprotein drug transporter and retains activity in III-tubulin-overexpressing cell lines, suggesting that it circumvents both clinically relevant mechanisms of drug resistance to this class of agents. Our data show a close correlation between the concentration of ELR510444 required for inhibition of cellular proliferation and that required to cause significant loss of cellular microtubule density, consistent with its activity as a microtubule depolymerizer. ELR510444 also shows potent antitumor activity in the MDA-MB-231 xenograft model with at least a 2-fold therapeutic window. Studies in tumor endothelial cells show that a low concentration of ELR510444 (30 nM) rapidly alters endothelial cell shape, similar to the effect of the vascular disrupting agent combretastatin A4. These results suggest that ELR510444 is a novel microtubule-disrupting agent with potential antivascular effects and in vivo antitumor efficacy.
BackgroundHypoxia-inducible factor (HIF) is an attractive therapeutic target for renal cell carcinoma (RCC) as its high expression due to the loss of von Hippel-Lindau (VHL) promotes RCC progression. Considering this, we hypothesized that ELR510444, a novel orally available small molecule inhibitor of HIF activity, would reduce angiogenesis and possess significant activity in RCC. The mechanism of action and therapeutic efficacy of ELR510444 were investigated in in vitro and in vivo models of RCC.Principal FindingsELR510444 decreased HIF-1α and HIF-2α levels, reduced RCC cell viability and clonogenic survival, and induced apoptosis. VHL-deficient RCC cells were more sensitive to ELR510444-mediated apoptosis and restoration of VHL promoted drug resistance. Higher concentrations of ELR51044 promoted apoptosis independently of VHL status, possibly due to the microtubule destabilizing properties of this agent. ELR510444 significantly reduced tumor burden in the 786-O and A498 RCC xenograft models. These effects were associated with increased necrosis and apoptosis and inhibition of angiogenesis.ConclusionsELR510444 is a promising new HIF inhibitor that reduced RCC cell viability, induced apoptosis, and diminished tumor burden in RCC xenograft models. ELR510444 also destabilized microtubules suggesting that it possesses vascular disrupting and anti-angiogenic properties. Further investigation of ELR510444 for the therapy of RCC is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.