The centrosome-nucleus attachment is a prerequisite for faithful chromosome segregation during mitosis. We addressed the function of the nuclear envelope (NE) protein Sun-1 in centrosome-nucleus connection and the maintenance of genome stability in Dictyostelium discoideum. We provide evidence that Sun-1 requires direct chromatin binding for its inner nuclear membrane targeting. Truncation of the cryptic N-terminal chromatinbinding domain of Sun-1 induces dramatic separation of the inner from the outer nuclear membrane and deformations in nuclear morphology, which are also observed using a Sun-1 RNAi construct. Thus, chromatin binding of Sun-1 defines the integrity of the nuclear architecture. In addition to its role as a NE scaffold, we find that abrogation of the chromatin binding of Sun-1 dissociates the centrosome-nucleus connection, demonstrating that Sun-1 provides an essential link between the chromatin and the centrosome. Moreover, loss of the centrosomenucleus connection causes severe centrosome hyperamplification and defective spindle formation, which enhances aneuploidy and cell death significantly. We highlight an important new aspect for Sun-1 in coupling the centrosome and nuclear division during mitosis to ensure faithful chromosome segregation.Key words: aneuploidy, centrosome hyperamplification, nuclear envelope architecture, spindle formation defects, Unc-84 The nuclear envelope (NE) separates the nuclear compartment from the cytoplasm. It is composed of two membranes: the outer nuclear membrane (ONM) and the inner nuclear membrane (INM). The lumen between the two membranes is the perinuclear space (PNS). The ONM is continuous with the endoplasmic reticulum (ER), whereas the INM harbors a unique set of proteins. INM and ONM proteins can interact within the PNS. Underneath the INM, the nuclear lamina is located, which is formed by intermediate filament (IF) proteins and associated proteins. The lamina forms the nucleoskeleton and associates with the INM, chromatin and nuclear pore complexes. Proteins of the NE have important roles. They are involved in nuclear migration and positioning and are essential for many processes such as mitosis, meiosis, differentiation and cell migration. Furthermore, several of the NE proteins have been associated with inherited diseases (1,2). Research in mammalian cells and in Caenorhabditis eleganshas identified conserved components of the NE that link the nucleoskeleton to the cytoskeleton. In C. elegans, two putative INM proteins, matefin/SUN-1 and UNC-84, bind to the nuclear lamina and extend their C-terminus into the PNS where they interact with the C-termini of KASH domain proteins (Klarsicht/Anc-1/Syne homology, designated KASH domain). Matefin/SUN-1 and UNC-84 belong to the SUN family of proteins based on the presence of the conserved SUN (Sad1/UNC-84 homology) domain at their C-terminus. KASH domain proteins are type II transmembrane proteins of the NE and have been identified as molecular linkers connecting the nucleus to actin filaments [filamentous acti...
NKAP is a highly conserved protein with roles in transcriptional repression, T-cell development, maturation and acquisition of functional competency and maintenance and survival of adult hematopoietic stem cells. Here we report the novel role of NKAP in splicing. With NKAP-specific antibodies we found that NKAP localizes to nuclear speckles. NKAP has an RS motif at the N-terminus followed by a highly basic domain and a DUF 926 domain at the C-terminal region. Deletion analysis showed that the basic domain is important for speckle localization. In pull-down experiments, we identified RNA-binding proteins, RNA helicases and splicing factors as interaction partners of NKAP, among them FUS/TLS. The FUS/TLS–NKAP interaction takes place through the RS domain of NKAP and the RGG1 and RGG3 domains of FUS/TLS. We analyzed the ability of NKAP to interact with RNA using in vitro splicing assays and found that NKAP bound both spliced messenger RNA (mRNA) and unspliced pre-mRNA. Genome-wide analysis using crosslinking and immunoprecipitation-seq revealed NKAP association with U1, U4 and U5 small nuclear RNA, and we also demonstrated that knockdown of NKAP led to an increase in pre-mRNA percentage. Our results reveal NKAP as nuclear speckle protein with roles in RNA splicing and processing.
The Dictyostelium centrosome is a nucleus associated body consisting of a box-shaped core surrounded by the corona, an amorphous matrix functionally equivalent to the pericentriolar material of animal centrosomes which is responsible for the nucleation and anchoring of microtubules. Here we describe CP250 a component of the corona, an acidic coiled coil protein that is present at the centrosome throughout interphase while disappearing during prophase and reappearing at the end of late telophase. Amino acids 756-1148 of the 2110 amino acids are sufficient for centrosomal targeting and cell cycle-dependent centrosome association. Mutant cells lacking CP250 are smaller in size, growth on bacteria is delayed, chemotaxis is altered, and development is affected, which, in general, are defects observed in cytoskeletal mutants. Furthermore, loss of CP250 affected the nuclear envelope and led to reduced amounts and altered distribution of Sun-1, a conserved nuclear envelope protein that connects the centrosome to chromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.