Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.
Many applications involving superhydrophobic materials require accurate control and monitoring of wetting states and wetting transitions. Such monitoring is usually done by optical methods, which are neither versatile nor integrable. This letter presents an alternative approach based on acoustic measurements. An acoustic transducer is integrated on the back side of a superhydrophobic silicon surface on which water droplets are deposited. By analyzing the reflection of longitudinal acoustic waves at the composite liquid-solid-vapor interface, we show that it is possible to track the local evolution of the Cassie-to-Wenzel wetting transition efficiently, as induced by evaporation or the electrowetting actuation of droplets.
In this work, we propose acoustic characterization as a new method to probe wetting states on a superhydrophobic surface. The analysis of the multiple reflections of a longitudinal acoustic wave from solid-liquid and solid-vapor interfaces enables to distinguish between the two well known Cassie-Baxter and Wenzel wetting configurations. The phenomenon is investigated experimentally on silicon micro-pillars superhydrophobic surfaces and numerically using a finite difference time domain method. Numerical calculations of reflection coefficients show a good agreement with experimental measurements, and the method appears as a promising alternative to optical measurement methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.