We have discovered a novel class of human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors that block the polymerization reaction in a mode distinct from those of the nucleoside or nucleotide RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). For this class of indolopyridone compounds, steady-state kinetics revealed competitive inhibition with respect to the nucleotide substrate. Despite substantial structural differences with classical chain terminators or natural nucleotides, these data suggest that the nucleotide binding site of HIV RT may accommodate this novel class of RT inhibitors. To test this hypothesis, we have studied the mechanism of action of the prototype compound indolopyridone-1 (INDOPY-1) using a variety of complementary biochemical tools. Time course experiments with heteropolymeric templates showed "hot spots" for inhibition following the incorporation of pyrimidines (T>C). Moreover, binding studies and site-specific footprinting experiments revealed that INDOPY-1 traps the complex in the posttranslocational state, preventing binding and incorporation of the next complementary nucleotide. The novel mode of action translates into a unique resistance profile. While INDOPY-1 susceptibility is unaffected by mutations associated with NNRTI or multidrug NRTI resistance, mutations M184V and Y115F are associated with decreased susceptibility, and mutation K65R confers hypersusceptibility to INDOPY-1. This resistance profile provides additional evidence for active site binding. In conclusion, this class of indolopyridones can occupy the nucleotide binding site of HIV RT by forming a stable ternary complex whose stability is mainly dependent on the nature of the primer 3 end.The reverse transcriptase (RT) enzyme of human immunodeficiency virus type 1 (HIV-1) remains a major target in antiretroviral therapy, with the current standard of care being the use of two nucleoside or nucleotide analogue reverse transcriptase inhibitors (NRTIs), combined with one nonnucleoside reverse transcriptase inhibitor (NNRTI) or protease inhibitor (32).Upon entry into the cell, the virus is uncoated, and the viral RT enzyme converts its single-stranded RNA genome into double-stranded proviral DNA. Inhibition of this crucial event in the early viral life cycle ultimately precludes the virus from proliferating. Following the intracellular phosphorylation of NRTIs, NRTI-triphosphates compete with natural deoxyribonucleoside triphosphate (dNTP) pools and bind to the RT active site. They act as chain terminators due to the lack of a 3Ј-hydroxyl group (31). In contrast, NNRTIs represent a chemically diverse class of compounds that bind to a pocket in the vicinity of the catalytic site (25,29,30). Binding of these inhibitors is noncompetitive with respect to both dNTPs and template/primer (16).Despite the potency of combinations of NRTIs and NNRTIs, the emergence of mutations conferring resistance remains a major cause for treatment failure. The advent of novel RT inhibitors with a different mechani...
Toll-like receptor (TLR) 7 and 8 agonists can potentially be used in the treatment of viral infections and are particularly promising for chronic hepatitis B virus (HBV) infection. An internal screening effort identified a pyrimidine Toll-like receptor 7 and 8 dual agonist. This provided a novel alternative over the previously reported adenine and pteridone type of agonists. Structure-activity relationship, lead optimization, in silico docking, pharmacokinetics, and demonstration of ex vivo and in vivo cytokine production of the lead compound are presented.
A novel series of 2,4-diaminoquinazolines was identified as potent dual Toll-like receptor (TLR) 7 and 8 agonists with reduced off-target activity. The stereochemistry of the amino alcohol was found to influence the TLR7/8 selectivity with the ( R) isomer resulting in selective TLR8 agonism. Lead optimization toward a dual agonist afforded ( S)-3-((2-amino-8-fluoroquinazolin-4-yl)amino)hexanol 31 as a potent analog, being structurally different from previously described dual agonists ( McGowan J. Med. Chem. 2016 , 59 , 7936 ). Pharmacokinetic and pharmacodynamic (PK/PD) studies revealed the desired high first pass profile aimed at limiting systemic cytokine activation. In vivo pharmacodynamic studies with lead compound 31 demonstrated production of cytokines consistent with TLR7/8 activation in mice and cynomolgus monkeys and ex vivo inhibition of hepatitis B virus (HBV).
Pyrrolo[3,2-d]pyrimidines were identified as a new series of potent and selective TLR7 agonists. Compounds were optimized for their activity and selectivity over TLR8. This presents an advantage over recently described scaffolds that have residual TLR8 activity, which may be detrimental to the tolerability of the candidate drug. Oral administration of the lead compound 54 effectively induced a transient interferon stimulated gene (ISG) response in mice and cynomolgus monkeys. We aimed for a high first pass effect, limiting cytokine induction systemically, and demonstrated the potential for the immunotherapy of viral hepatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.