Innervation of the gut is segmentally lost in Hirschsprung disease (HSCR), a consequence of cell-autonomous and non-autonomous defects in enteric neuronal cell differentiation, proliferation, migration, or survival. Rare, high-penetrance coding variants and common, low-penetrance non-coding variants in 13 genes are known to underlie HSCR risk, with the most frequent variants in the ret proto-oncogene (RET). We used a genome-wide association (220 trios) and replication (429 trios) study to reveal a second non-coding variant distal to RET and a non-coding allele on chromosome 7 within the class 3 Semaphorin gene cluster. Analysis in Ret wild-type and Ret-null mice demonstrates specific expression of Sema3a, Sema3c, and Sema3d in the enteric nervous system (ENS). In zebrafish embryos, sema3 knockdowns show reduction of migratory ENS precursors with complete ablation under conjoint ret loss of function. Seven candidate receptors of Sema3 proteins are also expressed within the mouse ENS and their expression is also lost in the ENS of Ret-null embryos. Sequencing of SEMA3A, SEMA3C, and SEMA3D in 254 HSCR-affected subjects followed by in silico protein structure modeling and functional analyses identified five disease-associated alleles with loss-of-function defects in semaphorin dimerization and binding to their cognate neuropilin and plexin receptors. Thus, semaphorin 3C/3D signaling is an evolutionarily conserved regulator of ENS development whose dys-regulation is a cause of enteric aganglionosis.
Background-The ECG QT interval is associated with risk of sudden cardiac death (SCD). A previous genome-wideassociation study demonstrated that allelic variants (rs10494366 and rs4657139) in the nitric oxide synthase 1 adaptor protein (NOS1AP), which encodes a carboxy-terminal PDZ ligand of neuronal nitric oxide synthase, are associated with the QT interval in white adults. The present analysis was conducted to validate the association between NOS1AP variants and the QT interval and to examine the association with SCD in a combined population of 19 295 black and white adults from the Atherosclerosis Risk In Communities Study and the Cardiovascular Health Study. Methods and Results-We examined 19 tagging single-nucleotide polymorphisms in the genomic blocks containing rs10494366 and rs4657139 in NOS1AP. SCD was defined as a sudden pulseless condition of cardiac origin in a previously stable individual. General linear models and Cox proportional hazards regression models were used. Multiple single-nucleotide polymorphisms in NOS1AP, including rs10494366, rs4657139, and rs16847548, were significantly associated with adjusted QT interval in whites (PϽ0.0001). In whites, after adjustment for age, sex, and study, the relative hazard of SCD associated with each C allele at rs16847548 was 1.31 (95% confidence interval 1.10 to 1.56, Pϭ0.002), assuming an additive model. In addition, a downstream neighboring single-nucleotide polymorphism, rs12567209, which was not correlated with rs16847548 or QT interval, was also independently associated with SCD in whites (relative hazard 0.57, 95% confidence interval 0.39 to 0.83, Pϭ0.003). Adjustment for QT interval and coronary heart disease risk factors attenuated but did not eliminate the association between rs16847548 and SCD, and such adjustment had no effect on the association between rs12567209 and SCD. No significant associations between tagging single-nucleotide polymorphisms in NOS1AP and either QT interval or SCD were observed in blacks. Conclusions-In
Polymicrogyria is a cerebral cortical malformation that is grossly characterized by excessive cortical folding and microscopically characterized by abnormal cortical layering. Although polymicrogyria appears to have one or more genetic causes, no polymicrogyria loci have been identified. Here we describe the clinical and radiographic features of a new genetic form of polymicrogyria and localize the responsible gene. We studied two consanguineous Palestinian pedigrees with an autosomal recessive form of bilateral frontoparietal polymicrogyria (BFPP), using linkage analysis. Five affected children had moderate-to-severe mental retardation, developmental delay, and esotropia, and four of the five affected children developed seizures. Brain magnetic-resonance imaging revealed polymicrogyria that was most prominent in the frontal and parietal lobes but involved other cortical areas as well. A genomewide linkage screen revealed a single locus that was identical by descent in affected children in both families and showed a single disease-associated haplotype, suggesting a common founder mutation. The locus for BFPP maps to chromosome 16q12.2-21, with a minimal interval of 17 cM. For D16S514, the maximal pooled two-point LOD score was 3.98, and the maximal multipoint LOD score was 4.57. This study provides the first genetic evidence that BFPP is an autosomal recessive disorder and serves as a starting point for the identification of the responsible gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.