Rationale: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell-derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation.Objectives: To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway.Methods: We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirusinfected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade.
Rhinoviruses are the most common cause of virally-induced asthma exacerbations which continue to account for the greatest burden in terms of morbidity, mortality and cost associated with this disease. IL-25 activates type-2-driven inflammation and is potentially important in virally-induced asthma exacerbations. Rhinovirus-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental rhinovirus infection. In mice rhinovirus infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbationspecific responses including type-2 cytokine expression, mucus production and recruitment of eosinophils, neutrophils, basophils, T and non-T type-2 cells. We have identified that asthmatic epithelial cells possess increased intrinsic capacity for expression of a pro-type-2 cytokine in
Asthma and chronic obstructive pulmonary disease (COPD) are associated with Th2 and Th1 differentiated T cells. The cytokine thymic stromal lymphopoietin (TSLP) promotes differentiation of Th2 T cells and secretion of chemokines which preferentially attract them. We hypothesized that there is distinct airways expression of TSLP and chemokines which preferentially attract Th1- and Th2-type T cells, and influx of T cells bearing their receptors in asthma and COPD. In situ hybridization, immunohistochemistry, and ELISA were used to examine the expression and cellular provenance of TSLP, Th2-attracting (TARC/CCL17, MDC/CCL22, I-309/CCL1), and Th1-attracting (IP-10/CXCL10, I-TAC/CXCL11) chemokines in the bronchial mucosa and bronchoalveolar lavage fluid of subjects with moderate/severe asthma, COPD, and controls. Cells expressing mRNA encoding TSLP, TARC/CCL17, MDC/CCL22, and IP-10/CXCL10, but not I-TAC/CXCL11 and I-309/CCL1, were significantly increased in severe asthma and COPD as compared with non-smoker controls (p < 0.02). This pattern was reflected in bronchoalveolar lavage fluid protein concentrations. Expression of the same chemokines was also increased in ex- and current smokers. The cellular sources of TSLP and chemokines were strikingly similar in severe asthma and COPD. The numbers of total bronchial mucosal T cells expressing the chemokine receptors CCR4, CCR8, and CXCR3 did not significantly differ in asthma, COPD, and controls. Both asthma and COPD are associated with elevated bronchial mucosal expression of TSLP and the same Th1- and Th2-attracting chemokines. Increased expression of these chemokines is not, however, associated with selective accumulation of T cells bearing their receptors.
Rationale: There is increasing evidence for the presence of autoantibodies in chronic obstructive pulmonary disease (COPD). Chronic oxidative stress is an essential component in COPD pathogenesis and can lead to increased levels of highly reactive carbonyls in the lung, which could result in the formation of highly immunogenic carbonyl adducts on "self" proteins. Objectives: To determine the presence of autoantibodies to carbonylmodified protein in patients with COPD and in a murine model of chronic ozone exposure. To assess the extent of activated immune responses toward carbonyl-modified proteins. Methods: Blood and peripheral lung were taken from patients with COPD, age-matched smokers, and nonsmokers with normal lung function, as well as patients with severe persistent asthma. Mice were exposed to ambient air or ozone for 6 weeks. Antibody titers were measured by ELISA, activated compliment deposition by immunohistochemistry, and cellular activation by ELISA and fluorescenceactivated cell sorter. Measurements and Main Results: Antibody titer against carbonylmodified self-protein was significantly increased in patients with Global Initiative for Chronic Obstructive Lung Disease stage III COPD compared with control subjects. Antibody levels inversely correlated with disease severity and showed a prevalence toward an IgG1 isotype. Deposition of activated complement in the vessels of COPD lung as well as autoantibodies against endothelial cells were also observed. Ozone-exposed mice similarly exhibited increased antibody titers to carbonyl-modified protein, as well as activated antigen-presenting cells in lung tissue and splenocytes sensitized to activation by carbonylmodified protein.Conclusions: Carbonyl-modified proteins, arising as a result of oxidative stress, promote antibody production, providing a link by which oxidative stress could drive an autoimmune response in COPD.Keywords: COPD; autoimmunity; oxidative stress; carbonyl Chronic obstructive pulmonary disease (COPD) is currently a leading cause of morbidity and mortality worldwide (1), with the main cause being long-term cigarette smoking in the western world (1, 2). Inflammation and remodeling of the small airways are major determinants for the progression and severity of COPD, as defined by the decline in FEV 1 (3). Accumulation of inflammatory mucous exudates in the lumen and infiltration of the wall by innate and adaptive inflammatory immune cells, such as CD4 1 cells, CD8 1 cells, B cells, macrophages, and neutrophils, and the formation of lymphoid follicles are all features of the observed inflammation that correlate with the severity of COPD (3, 4).Previous studies have suggested that autoimmune mechanisms may contribute to the pathogenesis of COPD. Serum autoantibodies against elastin (5) and bronchial epithelial cells along with corresponding IgG and complement (C3) deposition (6) have been observed in COPD lung. It has therefore been proposed that cigarette smoke-derived antigens may be responsible for driving this disease process in COPD (...
BackgroundRhinovirus infection is a major cause of asthma exacerbations.ObjectivesWe studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations.MethodsWe used nasosorption on days 0, 2–5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n = 28) and healthy non-atopic controls (n = 11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay.ResultsFollowing rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P < 0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0–7, all P < 0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P < 0.01) and levels increased by days 3 and 4 (P < 0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7 days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P < 0.05).ConclusionsPrecision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.