Despite the fact that Nepal is one of the first countries globally to introduce multidrug-resistant tuberculosis (MDR-TB) case management, the number of MDR-TB cases is continuing to rise in Nepal. Rapid molecular tests applicable in this setting to identify resistant organisms would be an effective tool in reversing this trend. To develop such tools, information about the frequency and distribution of mutations that are associated with phenotypic drug resistance in Mycobacterium tuberculosis is required. In the present study, we investigated the prevalence of mutations in rpoB and katG genes and the inhA promoter region in 158 M. tuberculosis isolates (
Xpert MTB/RIF assay is regarded as a great achievement of modern medicine for the rapid diagnosis of multidrug-resistant tuberculosis (MDR-TB). The main purpose of this study was to determine the performance of Xpert MTB/RIF assay compared to conventional drug susceptibility testing (DST) method for the diagnosis of MDR-TB. A comparative cross sectional study was carried out at German-Nepal Tuberculosis Project, Kathmandu, Nepal, from April 2014 to September 2014. A total of 88 culture positive clinical samples (83 pulmonary and 5 extra-pulmonary) received during the study period were analyzed for detection of multidrug-resistant tuberculosis by both GeneXpert MTB/RIF assay and conventional DST method. McNemar chi square test was used to compare the performance of Xpert with that of DST method. A p-value of less than 0.05 was considered as statistically significant. Of total 88 culture positive samples, one was reported as invalid while 2 were found to contain nontuberculous Mycobacteria (NTM). Among remaining 85 Mycobacterium tuberculosis culture positive samples, 69 were found to be MDR-TB positive by both methods. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of GeneXpert MTB/RIF assay were found to be 98.6%, 100%, 100% and 93.8% respectively. Statistically, there was no significant difference between the diagnostic performance of Xpert and conventional DST method for detection of MDR-TB. GeneXpert MTB/RIF assay was found to be highly sensitive, specific and comparable to gold standard conventional DST method for the diagnosis of MDR-TB.
BackgroundTuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown.Methods and FindingsWe analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42–4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43–5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status.ConclusionsWe found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian region.
ObjectiveThe aim of this study was to describe treatment outcomes for multi-drug resistant tuberculosis (MDR-TB) outpatients on a standardized regimen in Nepal.MethodologyData on pulmonary MDR-TB patients enrolled for treatment in the Green Light Committee-approved National Programme between 15 September 2005 and 15 September 2006 were studied. Standardized regimen was used (8Z-Km-Ofx-Eto-Cs/16Z-Ofx-Eto-Cs) for a maximum of 32 months and follow-up was by smear and culture. Drug susceptibility testing (DST) results were not used to modify the treatment regimen. MDR-TB therapy was delivered in outpatient facilities for the whole course of treatment. Multivariable analysis was used to explain bacteriological cure as a function of sex, age, initial body weight, history of previous treatment and the region of report.Principal FindingsIn the first 12-months, 175 laboratory-confirmed MDR-TB cases (62% males) had outcomes reported. Most cases had failed a Category 2 first-line regimen (87%) or a Category 1 regimen (6%), 2% were previously untreated contacts of MDR-TB cases and 5% were unspecified. Cure was reported among 70% of patients (range 38%–93% by Region), 8% died, 5% failed treatment, and 17% defaulted. Unfavorable outcomes were not correlated to the number of resistant drugs at baseline DST. Cases who died had a lower mean body weight than those surviving (40.3 kg vs 47.2 kg, p<0.05). Default was significantly higher in two regions [Eastern OR = 6.2; 95%CL2.0-18.9; Far West OR = 5.0; 95%CL1.0-24.3]. At logistic regression, cure was inversely associated with body weight <36 kg [Adj.OR = 0.1; 95%CL0.0-0.3; ref. 55–75 kg] and treatment in the Eastern region [Adj.OR = 0.1; 95%CL0.0-0.4; ref. Central region].ConclusionsThe implementation of an ambulatory-based treatment programme for MDR-TB based on a fully standardized regimen can yield high cure rates even in resource-limited settings. The determinants of unfavorable outcome should be investigated thoroughly to maximize likelihood of successful treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.