The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.
Habitat destruction and overexploitation are the main threats to biodiversity and where they co‐occur, their combined impact is often larger than their individual one. Yet, detailed knowledge of the spatial footprints of these threats is lacking, including where they overlap and how they change over time. These knowledge gaps are real barriers for effective conservation planning. Here, we develop a novel approach to reconstruct the individual and combined footprints of both threats over time. We combine satellite‐based land‐cover change maps, habitat suitability models and hunting pressure models to demonstrate our approach for the community of larger mammals (48 species > 1 kg) across the 1.1 million km2 Gran Chaco region, a global deforestation hotspot covering parts of Argentina, Bolivia and Paraguay. This provides three key insights. First, we find that the footprints of habitat destruction and hunting pressure expanded considerably between 1985 and 2015, across ~40% of the entire Chaco – twice the area affected by deforestation. Second, both threats increasingly acted together within the ranges of larger mammals in the Chaco (17% increase on average, ± 20% SD, cumulative increase of co‐occurring threats across 465 000 km2), suggesting large synergistic effects. Conversely, core areas of high‐quality habitats declined on average by 38%. Third, we identified remaining priority areas for conservation in the northern and central Chaco, many of which are outside the protected area network. We also identify hotspots of high threat impacts in central Paraguay and northern Argentina, providing a spatial template for threat‐specific conservation action. Overall, our findings suggest increasing synergistic effects between habitat destruction and hunting pressure in the Chaco, a situation likely common in many tropical deforestation frontiers. Our work highlights how threats can be traced in space and time to understand their individual and combined impact, even in situations where data are sparse.
Habitat loss is the primary cause of local extinctions. Yet, there is considerable uncertainty regarding how fast species respond to habitat loss, and how time‐delayed responses vary in space. We focused on the Argentine Dry Chaco (c. 32 million ha), a global deforestation hotspot, and tested for time‐delayed response of bird and mammal communities to landscape transformation. We quantified the magnitude of extinction debt by modelling contemporary species richness as a function of either contemporary or past (2000 and 1985) landscape patterns. We then used these models to map communities' extinction debt. We found strong evidence for an extinction debt: landscape structure from 2000 explained contemporary species richness of birds and mammals better than contemporary and 1985 landscapes. This suggests time‐delayed responses between 10 and 25 years. Extinction debt was especially strong for forest specialists. Projecting our models across the Chaco highlighted areas where future local extinctions due to unpaid extinction debt are likely. Areas recently converted to agriculture had highest extinction debt, regardless of the post‐conversion land use. Few local extinctions were predicted in areas with remaining larger forest patches. Synthesis and applications. The evidence for an unpaid extinction debt in the Argentine Dry Chaco provides a substantial window of opportunity for averting local biodiversity losses. However, this window may close rapidly if conservation activities such as habitat restoration are not implemented swiftly. Our extinction debt maps highlight areas where such conservation activities should be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.