The directional polarimetric camera (DPC), developed by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, is a satellite sensor used to observe the polarization and directionality of the earth’s reflectance. It acquires the two-dimensional image of the earth with a large field of view (118.74°) and a high spatial resolution (3.3 km) in 8 spectral bands. The first DPC was successfully launched onboard the GaoFen-5 satellite in May 2018, subject to the Chinese high-resolution earth observation program. In this paper, a set of systematic and complete pre-flight calibrations of the DPC are proposed to ensure the effective characterization for in-flight calibration, so as to ensure the accuracy of DPC measured radiation polarization data and the reliability of inversion results. Since the geometric calibration method of the DPC has been presented in an early companion paper [Appl. Opt. 59 226 (2020)], this paper will not introduce it in detail. Instead, the geometric calibration results of each spectral band together with a discussion on the origin of differences between spectral bands are analyzed, and the error analysis of the method is conducted. The results of the DPC geometric calibration is that the residuals of all spectral bands are less than 0.1 pixel. For radiometric calibration, the radiometric models of non-polarized bands and polarized bands are derived in detail, respectively, and the specific calibration methods with error analysis, equipment, and main results with their related accuracies for each parameter of the radiometric models are described. To verify the accuracy of calibration parameters, a series of polarization detection accuracy verification experiments based on a non-polarized radiation source, a polarizing system, and a natural scene were carried out. The experimental results show that the maximum deviation of degree of polarization between the set values of the polarizing system and measured values of the DPC at the corresponding positions of four field of view angles of 0, 15, 30, and 45 degrees of each polarized spectral band is 0.009, 0.004, and 0.003, respectively. The average error in measuring the degree of polarization of a non-polarized light source by all pixels in the three polarized bands is 0.0043, 0.0046, and 0.0037, respectively. And the relative deviations of each field of view are within 0.020 when the DPC and CE318N simultaneously measure the DoLP of sky. All of these prove the effectiveness of the pre-flight calibration.
The Directional Polarimetric Camera (DPC) is the first Chinese multi-angle polarized Earth observation satellite sensor, which was successfully launched on 9 May 2018, onboard the GaoFen-5 satellite in the Chinese High-Resolution Earth Observation Program. The DPC’s observation is one of the most important space-borne multi-spectral, multi-angular polarimetric measurements of the global Earth-atmosphere system at the present stage. Although rigorous radiometric calibration had been performed for the DPC before launch, its in-flight performance may change because of the process of launch, harsh environment of space, and aging of the sensor. Due to the absence of the onboard calibration system, vicarious calibration methods are necessary for the DPC’s in-flight performance monitoring and calibration. In this paper, we adapted the Rayleigh absolute calibration method, the sun glint inter-band calibration method, and the sun glint polarization calibration method to the DPC sensor. First, the calibration errors of these three methods caused by ancillary data uncertainties (e.g., aerosol, chlorophyll concentration, absorption gases amount, and wind speed) were analyzed in detail. The error budgets show that the aerosol parameters (optical thickness and aerosol model) are some of the critical factors affecting both the radiometric and polarimetric calibration accuracies for the Rayleigh and sun glint methods. The DPC radiometric and polarimetric in-flight calibration during its commissioning phase was then implemented. The absolute coefficients of short spectral bands (443, 490, 565, and 670 nm) were calibrated by the well-characterized Rayleigh scattering signal over the ocean. Using the 565 nm band as a reference band, the Rayleigh absolute calibration was then transferred to other bands (443, 490, 670, and 865 nm) through inter-band calibration using the specular reflection of the sun over the ocean. The polarization measurements of the DPC at polarized bands (490, 670, and 865 nm) were calibrated with the polarized reflection of the sun glint over ocean. The preliminary results show that the radiometric sensitivity of the DPC changed very little after launch at the four visible bands. The absolute calibration coefficient differences from pre-flight calibration are smaller than 0.5% at the 443 and 670 nm bands, while they are within ± 2 % at the 490 and 565 nm bands. However, a large deviation at 865 nm band of about 9% from pre-flight calibration was indicated by the sun glint inter-band calibration. The degree of linear polarization measurement of the DPC is validated with high accuracy of about 0.02 at the 865 nm band, while the deviation at 490 and 670 nm bands are relatively larger, reaching 0.04. The DPC/GaoFen-5 shows a good in-flight performance of radiometric measurement and generally reliable polarimetric measurement after launch.
The directional polarimetric camera (DPC) is a polarization sensor with ultra-wide-angle and low-distortion imaging characteristics. Geometric calibration is usually the first essential step before remote sensing satellites are launched. In this paper, a geometric calibration method based on a two-dimensional turntable and a rotation matrix with high precision, simple operation, and wide application range is proposed for the directional polarimetric camera. Instead of precisely adjusting the position of the sensor on the turntable, the method effectively eliminates the errors caused by the mechanical axis of the turntable and the optical axis of the sensor not being adjusted to the same direction through the rotation transformation of the coordinate system. The geometric calibration experiments of the directional polarimetric camera were carried out with the method of Chen et al. [Optik 121, 486 (2010)10.1016/j.ijleo.2008.08.004OTIKAJ0030-4026] and the proposed method. The experimental results showed the calibration residual of the proposed method was less than 0.1 pixel while Chen’s method was 0.3 pixel. The mean reprojection error and root mean square error of the proposed method were reduced to 0.06352 pixel and 0.06961 pixel, respectively. The geometric calibration parameters obtained by the proposed method were used for geometric correction of the in-orbit images of the DPC, and the results also prove the effectiveness and superiority of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.