Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and αCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed αCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of αCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days.
Background Recently, we have shown that an immunosuppression regimen including costimulation blockade via anti-CD154 antibody significantly prolongs the cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon heterotopic xenotransplantation model. Unfortunately, many coagulation disorders were observed with the use of anti-CD154 antibody, and recipient survival was markedly reduced by these complications. Material and Methods In this experiment, we replaced anti-CD154 antibody with a more clinically acceptable anti-CD40 antibody while keeping the rest of the immunosuppressive regimen and the donor pig genetics the same. This was carried out to evaluate the antibody's role in xenograft survival and prevention of coagulopathies. Two available clones of anti-CD40 antibody were tested. One mouse anti-human CD40 antibody, (clone 3A8), activated B lymphocytes in vitro and only modestly suppressed antibody production in vivo. Whereas a recombinant mouse non-human primate chimeric raised against macaque CD40, (clone 2C10R4), blocked B-cell activation in vitro and completely blocked antibody production in vivo. Results The thrombotic complications seen with anti-CD154 antibody were effectively avoided but the graft survival, although extended, was not as prolonged as observed with anti-CD154 antibody treatment. The longest survival for the 3A8 antibody group was 27 days, and the longest graft survival in the 2C10R4 antibody group was 146 days. All of the grafts except two rejected and were explanted. Only two recipient baboons had to be euthanized due to unrelated complications, and the rest of the baboons remained healthy throughout the graft survival period or after graft explantation. In contrast to our anti-CD 154 antibody-treated baboons, the non-Gal antibody levels started to rise after B cells made their appearance around 8 weeks post-transplantation. Conclusions Anti-CD40 antibody at the current dose does not induce any coagulopathies but while effective, had reduced efficacy to induce similar long-term graft survival as with anti-CD154 antibody perhaps due to ineffective control of B-cell function and antibody production at the present dose. More experiments are required to determine antibody affinity and effective dose for inducing long-term cardiac xenograft survival.
We report orthotopic (life‐supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti‐CD40 monoclonal antibody‐based immunosuppression. In this current study, life‐supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti‐inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective “multi‐gene” xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective “multi‐gene” modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.
A combination of genetic manipulations of donor organs and target‐specific immunosuppression is instrumental in achieving long‐term cardiac xenograft survival. Recently, results from our preclinical pig‐to‐baboon heterotopic cardiac xenotransplantation model suggest that a three‐pronged approach is successful in extending xenograft survival: (a) α‐1,3‐galactosyl transferase (Gal) gene knockout in donor pigs (GTKO) to prevent Gal‐specific antibody‐mediated rejection; (b) transgenic expression of human complement regulatory proteins (hCRP; hCD46) and human thromboregulatory protein thrombomodulin (hTBM) to avoid complement activation and coagulation dysregulation; and (c) effective induction and maintenance of immunomodulation, particularly through co‐stimulation blockade of CD40‐CD40L pathways with anti‐CD40 (2C10R4) monoclonal antibody (mAb). Using this combination of manipulations, we reported significant improvement in cardiac xenograft survival. In this study, we are reporting the survival of cardiac xenotransplantation recipients (n = 3) receiving xenografts from pigs without the expression of hTBM (GTKO.CD46). We observed that all grafts underwent rejection at an early time point (median 70 days) despite utilization of our previously reported successful immunosuppression regimen and effective control of non‐Gal antibody response. These results support our hypothesis that transgenic expression of human thrombomodulin in donor pigs confers an independent protective effect for xenograft survival in the setting of a co‐stimulation blockade‐based immunomodulatory regimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.