Background An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced. Methods We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) inWuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020.Findings We estimated that the median daily reproduction number (R t ) in Wuhan declined from 2·35 (95% CI 1·15-4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41-2·39) 1 week after. Based on our estimates of R t , assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population.Interpretation Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually.
Background Isolation of cases and contact tracing is used to control outbreaks of infectious diseases, and has been used for coronavirus disease 2019 (COVID-19). Whether this strategy will achieve control depends on characteristics of both the pathogen and the response. Here we use a mathematical model to assess if isolation and contact tracing are able to control onwards transmission from imported cases of COVID-19. MethodsWe developed a stochastic transmission model, parameterised to the COVID-19 outbreak. We used the model to quantify the potential effectiveness of contact tracing and isolation of cases at controlling a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-like pathogen. We considered scenarios that varied in the number of initial cases, the basic reproduction number (R 0 ), the delay from symptom onset to isolation, the probability that contacts were traced, the proportion of transmission that occurred before symptom onset, and the proportion of subclinical infections. We assumed isolation prevented all further transmission in the model. Outbreaks were deemed controlled if transmission ended within 12 weeks or before 5000 cases in total. We measured the success of controlling outbreaks using isolation and contact tracing, and quantified the weekly maximum number of cases traced to measure feasibility of public health effort.Findings Simulated outbreaks starting with five initial cases, an R 0 of 1·5, and 0% transmission before symptom onset could be controlled even with low contact tracing probability; however, the probability of controlling an outbreak decreased with the number of initial cases, when R 0 was 2·5 or 3·5 and with more transmission before symptom onset. Across different initial numbers of cases, the majority of scenarios with an R 0 of 1·5 were controllable with less than 50% of contacts successfully traced. To control the majority of outbreaks, for R 0 of 2·5 more than 70% of contacts had to be traced, and for an R 0 of 3·5 more than 90% of contacts had to be traced. The delay between symptom onset and isolation had the largest role in determining whether an outbreak was controllable when R 0 was 1·5. For R 0 values of 2·5 or 3·5, if there were 40 initial cases, contact tracing and isolation were only potentially feasible when less than 1% of transmission occurred before symptom onset.Interpretation In most scenarios, highly effective contact tracing and case isolation is enough to control a new outbreak of COVID-19 within 3 months. The probability of control decreases with long delays from symptom onset to isolation, fewer cases ascertained by contact tracing, and increasing transmission before symptoms. This model can be modified to reflect updated transmission characteristics and more specific definitions of outbreak control to assess the potential success of local response efforts.
Background In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world.Methods To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April).Findings Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66-97) and 24% (13-90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic.Interpretation Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R 0 and the duration of infectiousness.
The COVID-19 pandemic has shown a markedly low proportion of cases among children 1-4. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from China, Italy, Japan, Singapore, Canada and South Korea. We estimate that susceptibility to infection in individuals under 20 years of age is approximately half that of adults aged over 20 years, and that clinical symptoms manifest in 21% (95% credible interval: 12-31%) of infections in 10-to 19-year-olds, rising to 69% (57-82%) of infections in people aged over 70 years. Accordingly, we find that interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low. Our age-specific clinical fraction and susceptibility estimates have implications for the expected global burden of COVID-19, as a result of demographic differences across settings. In countries with younger population structures-such as many low-income countries-the expected per capita incidence of clinical cases would be lower than in countries with older population structures, although it is likely that comorbidities in low-income countries will also influence disease severity. Without effective control measures, regions with relatively older populations could see disproportionally more cases of COVID-19, particularly in the later stages of an unmitigated epidemic. COVID-19 shows an increased number of cases and a greater risk of severe disease with increasing age 5,6 , a feature shared with the 2003 SARS epidemics 7. This age gradient in reported cases, which has been observed from the earliest stages of the pandemic 1 , could result from children having decreased susceptibility to infection, a lower probability of showing disease on infection or a combination of both, compared with adults. Understanding the role of age in transmission and disease severity is critical for determining the likely impact of social-distancing interventions on SARS-CoV-2 transmission 8 , especially those aimed at schools, and for estimating the expected global disease burden. Here, we disentangle the relative contributions of three potential drivers of the observed distribution of clinical cases by age. We present a summary of the main findings, limitations and implications of this work in Table 1. First, age-varying susceptibility to infection by SARS-CoV-2, where children are less susceptible than adults to becoming infected on contact with an infectious person, would reduce cases among children. Decreased susceptibility could result from immune for predicted global burden and the effectiveness of control interventions. This question must be resolved to effectively forecast and control COVID-19 epidemics.
Background The risk of severe COVID-19 if an individual becomes infected is known to be higher in older individuals and those with underlying health conditions. Understanding the number of individuals at increased risk of severe COVID-19 and how this varies between countries should inform the design of possible strategies to shield or vaccinate those at highest risk. Methods We estimated the number of individuals at increased risk of severe disease (defined as those with at least one condition listed as "at increased risk of severe COVID-19" in current guidelines) by age (5-year age groups), sex, and country for 188 countries using prevalence data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 and UN population estimates for 2020. The list of underlying conditions relevant to COVID-19 was determined by mapping the conditions listed in GBD 2017 to those listed in guidelines published by WHO and public health agencies in the UK and the USA. We analysed data from two large multimorbidity studies to determine appropriate adjustment factors for clustering and multimorbidity. To help interpretation of the degree of risk among those at increased risk, we also estimated the number of individuals at high risk (defined as those that would require hospital admission if infected) using age-specific infection-hospitalisation ratios for COVID-19 estimated for mainland China and making adjustments to reflect country-specific differences in the prevalence of underlying conditions and frailty. We assumed males were twice at likely as females to be at high risk. We also calculated the number of individuals without an underlying condition that could be considered at increased risk because of their age, using minimum ages from 50 to 70 years. We generated uncertainty intervals (UIs) for our estimates by running low and high scenarios using the lower and upper 95% confidence limits for country population size, disease prevalences, multimorbidity fractions, and infection-hospitalisation ratios, and plausible low and high estimates for the degree of clustering, informed by multimorbidity studies. Findings We estimated that 1•7 billion (UI 1•0-2•4) people, comprising 22% (UI 15-28) of the global population, have at least one underlying condition that puts them at increased risk of severe COVID-19 if infected (ranging from <5% of those younger than 20 years to >66% of those aged 70 years or older). We estimated that 349 million (186-787) people (4% [3-9] of the global population) are at high risk of severe COVID-19 and would require hospital admission if infected (ranging from <1% of those younger than 20 years to approximately 20% of those aged 70 years or older). We estimated 6% (3-12) of males to be at high risk compared with 3% (2-7) of females. The share of the population at increased risk was highest in countries with older populations, African countries with high HIV/AIDS prevalence, and small island nations with high diabetes prevalence. Estimates of the number of individuals at increased risk wer...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.