Combined with a simple water soluble [FeFe]-hydrogenase mimic 1, Ru(bpy)(3)(2+) and ascorbic acid enable hydrogen production photocatalytically. More than 88 equivalents of H(2) were achieved in water, which is much better than that obtained in an organic solvent or a mixture of organic solvent and water.
Multi-carbon alcohols such as ethanol are valued as fuels in view of their high energy density and ready transport. Unfortunately, the selectivity toward alcohols in CO 2 /CO electroreduction is diminished by ethylene production, especially when operating at high current densities (>100 mA cm −2). Here we report a metal doping approach to tune the adsorption of hydrogen at the copper surface and thereby promote alcohol production. Using density functional theory calculations, we screen a suite of transition metal dopants and find that incorporating Pd in Cu moderates hydrogen adsorption and assists the hydrogenation of C 2 intermediates, providing a means to favour alcohol production and suppress ethylene. We synthesize a Pd-doped Cu catalyst that achieves a Faradaic efficiency of 40% toward alcohols and a partial current density of 277 mA cm −2 from CO electroreduction. The activity exceeds that of prior reports by a factor of 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.