Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) have emerged as attractive platforms in next-generation nanoelectronics and optoelectronics for reducing device sizes down to a 10 nm scale. To achieve this, the controlled synthesis of wafer-scale single-crystal TMDs with high crystallinity has been a continuous pursuit. However, previous efforts to epitaxially grow TMD films on insulating substrates (e.g., mica and sapphire) failed to eliminate the evolution of antiparallel domains and twin boundaries, leading to the formation of polycrystalline films. Herein, we report the epitaxial growth of wafer-scale single-crystal MoS2 monolayers on vicinal Au(111) thin films, as obtained by melting and resolidifying commercial Au foils. The unidirectional alignment and seamless stitching of the MoS2 domains were comprehensively demonstrated using atomic- to centimeter-scale characterization techniques. By utilizing onsite scanning tunneling microscope characterizations combined with first-principles calculations, it was revealed that the nucleation of MoS2 monolayer is dominantly guided by the steps on Au(111), which leads to highly oriented growth of MoS2 along the ⟨110⟩ step edges. This work, thereby, makes a significant step toward the practical applications of MoS2 monolayers and the large-scale integration of 2D electronics.
Abstract2D magnetic materials have attracted intense attention as ideal platforms for constructing multifunctional electronic and spintronic devices. However, most of the reported 2D magnetic materials are mainly achieved by the mechanical exfoliation route. The direct synthesis of such materials is still rarely reported, especially toward thickness‐controlled synthesis down to the 2D limit. Herein, the thickness‐tunable synthesis of nanothick rhombohedral Cr2S3 flakes (from ≈1.9 nm to tens of nanometers) on a chemically inert mica substrate via a facile chemical vapor deposition route is demonstrated. This is accomplished by an accurate control of the feeding rate of the Cr precursor and the growth temperature. Furthermore, it is revealed that the conduction behavior of the nanothick Cr2S3 is variable with increasing thickness (from 2.6 to 4.8 nm and >7 nm) from p‐type to ambipolar and then to n‐type. Hereby, this work can shed light on the scalable synthesis, transport, and magnetic properties explorations of 2D magnetic materials.
To gain an atomistic-level understanding of the experimental observation that the cocrystal TNT/CL-20 leads to decreased sensitivity, we carried out reactive molecular dynamics (RMD) simulations using the ReaxFF reactive force field. We compared the thermal decomposition of the TNT/CL-20 cocrystal with that of pure crystals of TNT and CL-20 and with a simple physical mixture of TNT and CL-20. We find that cocrystal has a lower decomposition rate than CL-20 but higher than TNT, which is consistent with experimental observation. We find that the formation of carbon clusters arising from TNT, a carbon-rich molecule, plays an important role in the thermal decomposition process, explaining the decrease in sensitivity for the cocrystal. At low temperature and in the early stage of chemical reactions under high temperature, the cocrystal releases energy more slowly than the simple mixture of CL-20-TNT. These results confirm the expectation that co-crystallization is an effective way to decrease the sensitivity for energetic materials while retaining high performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.