N6-methyladenosine (m6A) is the most abundant internal modification in mammalian mRNAs. Despite its functional importance in various physiological events, the role of m6A in chemical carcinogenesis remains largely unknown. Here we profiled the dynamic m6A mRNA modification during cellular transformation induced by chemical carcinogens and identified a subset of cell transformation-related, concordantly modulated m6A sites. Notably, the increased m6A in 3′-UTR mRNA of oncogene CDCP1 was found in malignant transformed cells. Mechanistically, the m6A methyltransferase METTL3 and demethylases ALKBH5 mediate the m6A modification in 3′-UTR of CDCP1 mRNA. METTL3 and m6A reader YTHDF1 preferentially recognize m6A residues on CPCP1 3′-UTR and promote CDCP1 translation. We further showed that METTL3 and CDCP1 are upregulated in the bladder cancer patient samples and the expression of METTL3 and CDCP1 is correlated with the progression status of the bladder cancers. Inhibition of the METTL3-m6A-CDCP1 axis resulted in decreased growth and progression of chemical-transformed cells and bladder cancer cells. Most importantly, METTL3-m6A-CDCP1 axis has synergistic effect with chemical carcinogens in promoting malignant transformation of uroepithelial cells and bladder cancer tumorigenesis in vitro and in vivo. Taken together, our results identify dynamic m6A modification in chemical-induced malignant transformation and provide insight into critical roles of the METTL3-m6A-CDCP1 axis in chemical carcinogenesis.
are current employees of Geneplus-Beijing. C. Wang and Z. Yu are current employees of Geneplus-Shenzhen. L. Yang holds leadership positions of Geneplus-Beijing. The other authors declare no conflicts of interest. Translational Relevance Neoadjuvant chemoradiotherapy (nCRT) was the standard of care for patients with locally advanced rectal cancer (LARC), however the uniform regimen may not be applicable for all patients with different tumor loads and heterogeneous biological behaviors. In this study, the preoperative ctDNA status was significantly consistent with the postoperative pathological results, showing that ctDNA can accurately reflect the real-time tumor burden. Additionally, ctDNA showed a predictive ability for distant metastasis as early as prior to treatment. Besides, tumors with POLD1 mutation had significantly better response to nCRT than those without POLD1 mutation. These findings imply that ctDNA and tumor mutational information may potentially be powerful tools to guide the individualized multidisciplinary therapy for patients with LARC by assisting the selection of initial treatment strategies and regimens, or guiding the adjustment of treatment methods.
Tumor cells of colorectal cancer (CRC) release exosomes into the circulation. These exosomes can mediate communication between cells and affect various tumor-related processes in their target cells. We present a quantitative proteomics analysis of the exosomes purified from serum of patients with CRC and normal volunteers; data are available via ProteomeXchange with identifier PXD003875. We identified 918 proteins with an overlap of 725 Gene IDs in the Exocarta proteins list. Compared with the serum-purified exosomes (SPEs) of normal volunteers, we found 36 proteins upregulated and 22 proteins downregulated in the SPEs of CRC patients. Bioinformatics analysis revealed that upregulated proteins are involved in processes that modulate the pretumorigenic microenvironment for metastasis. In contrast, differentially expressed proteins (DEPs) that play critical roles in tumor growth and cell survival were principally downregulated. Our study demonstrates that SPEs of CRC patients play a pivotal role in promoting the tumor invasiveness, but have minimal influence on putative alterations in tumor survival or proliferation. According to bioinformatics analysis, we speculate that the protein contents of exosomes might be associated with whether they are involved in premetastatic niche establishment or growth and survival of metastatic tumor cells. This information will be helpful in elucidating the pathophysiological functions of tumor-derived exosomes, and aid in the development of CRC diagnostics and therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.