BackgroundThe brown planthopper, Nilaparvata lugens, the most destructive pest of rice, is a typical monophagous herbivore that feeds exclusively on rice sap, which migrates over long distances. Outbreaks of it have re-occurred approximately every three years in Asia. It has also been used as a model system for ecological studies and for developing effective pest management. To better understand how a monophagous sap-sucking arthropod herbivore has adapted to its exclusive host selection and to provide insights to improve pest control, we analyzed the genomes of the brown planthopper and its two endosymbionts.ResultsWe describe the 1.14 gigabase planthopper draft genome and the genomes of two microbial endosymbionts that permit the planthopper to forage exclusively on rice fields. Only 40.8% of the 27,571 identified Nilaparvata protein coding genes have detectable shared homology with the proteomes of the other 14 arthropods included in this study, reflecting large-scale gene losses including in evolutionarily conserved gene families and biochemical pathways. These unique genomic features are functionally associated with the animal’s exclusive plant host selection. Genes missing from the insect in conserved biochemical pathways that are essential for its survival on the nutritionally imbalanced sap diet are present in the genomes of its microbial endosymbionts, which have evolved to complement the mutualistic nutritional needs of the host.ConclusionsOur study reveals a series of complex adaptations of the brown planthopper involving a variety of biological processes, that result in its highly destructive impact on the exclusive host rice. All these findings highlight potential directions for effective pest control of the planthopper.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0521-0) contains supplementary material, which is available to authorized users.
Mitochondria are double-membrane organelles with varying shapes influenced by metabolic conditions, developmental stage, and environmental stimuli1–4. Their dynamic morphology is realized through regulated and balanced fusion and fission processes5, 6. Fusion is crucial for the health and physiological functions of mitochondria, including complementation of damaged mitochondrial DNAs and maintenance of membrane potential6–8. Mitofusins (Mfns) are dynamin-related GTPases essential for mitochondrial fusion9, 10. They are embedded in the mitochondrial outer membrane and thought to fuse adjacent mitochondria via concerted oligomerization and GTP hydrolysis11–13. However, the molecular mechanisms behind this process remains elusive. Here we present crystal structures of engineered human Mfn1 containing the GTPase domain and a helical domain in different stages of GTP hydrolysis. The helical domain is composed of elements from widely dispersed sequence regions of Mfn1 and resembles the Neck of the bacterial dynamin-like protein. The structures reveal unique features of its catalytic machinery and explain how GTP binding induces conformational changes to promote G domain dimerization in the transition state. Disruption of G domain dimerization abolishes the fusogenic activity of Mfn1. Moreover, a conserved aspartate trigger was found in Mfn1 to affect mitochondrial elongation, likely through a GTP-loading-dependent domain rearrangement. Based on these results, we propose a mechanistic model for Mfn1-mediated mitochondrial tethering. Our study provides important insights in the molecular basis of mitochondrial fusion and mitofusin-related human neuromuscular disorders14.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.