Over the past century more than 100 indices have been developed and used to assess bioclimatic conditions for human beings. The majority of these indices are used sporadically or for specific purposes. Some are based on generalized results of measurements (wind chill, cooling power, wet bulb temperature) and some on the empirically observed reactions of the human body to thermal stress (physiological strain, effective temperature). Those indices that are based on human heat balance considerations are referred to as "rational indices". Several simple human heat balance models are known and are used in research and practice. This paper presents a comparative analysis of the newly developed Universal Thermal Climate Index (UTCI), and some of the more prevalent thermal indices. The analysis is based on three groups of data: global data-set, synoptic datasets from Europe, and local scale data from special measurement campaigns of COST Action 730. We found the present indices to express bioclimatic conditions reasonably only under specific meteorological situations, while the UTCI represents specific climates, weather, and locations much better. Furthermore, similar to the human body, the UTCI is very sensitive to changes in ambient stimuli: temperature, solar radiation, wind and humidity. UTCI depicts temporal variability of thermal conditions better than other indices. The UTCI scale is able to express even slight differences in the intensity of meteorological stimuli.
Historical reanalyses that span more than a century are needed for a wide range of studies, from understanding large‐scale climate trends to diagnosing the impacts of individual historical extreme weather events. The Twentieth Century Reanalysis (20CR) Project is an effort to fill this need. It is supported by the National Oceanic and Atmospheric Administration (NOAA), the Cooperative Institute for Research in Environmental Sciences (CIRES), and the U.S. Department of Energy (DOE), and is facilitated by collaboration with the international Atmospheric Circulation Reconstructions over the Earth initiative. 20CR is the first ensemble of sub‐daily global atmospheric conditions spanning over 100 years. This provides a best estimate of the weather at any given place and time as well as an estimate of its confidence and uncertainty. While extremely useful, version 2c of this dataset (20CRv2c) has several significant issues, including inaccurate estimates of confidence and a global sea level pressure bias in the mid‐19th century. These and other issues can reduce its effectiveness for studies at many spatial and temporal scales. Therefore, the 20CR system underwent a series of developments to generate a significant new version of the reanalysis. The version 3 system (NOAA‐CIRES‐DOE 20CRv3) uses upgraded data assimilation methods including an adaptive inflation algorithm; has a newer, higher‐resolution forecast model that specifies dry air mass; and assimilates a larger set of pressure observations. These changes have improved the ensemble‐based estimates of confidence, removed spin‐up effects in the precipitation fields, and diminished the sea‐level pressure bias. Other improvements include more accurate representations of storm intensity, smaller errors, and large‐scale reductions in model bias. The 20CRv3 system is comprehensively reviewed, focusing on the aspects that have ameliorated issues in 20CRv2c. Despite the many improvements, some challenges remain, including a systematic bias in tropical precipitation and time‐varying biases in southern high‐latitude pressure fields.
This paper presents the spatial differentiation to biothermal conditions in the Ziemia Kłodzka region of Poland, the basis for the assessment being the Universal Thermal Climate Index (UTCI), with spatial analysis relating to maps made using a GIS application. The differentiation to UTCI values was defined for several types of weather.The greatest spatial differentiation to values for heat stress is to be observed in sunny, hot and dry weather in the presence of only gentle winds. Forests stand out from other types of landscape in the way they mitigate heat loads significantly.
The performance of a new historical reanalysis, the NOAA-CIRES-DOE 20th Century Reanalysis Version 3 (20CRv3), is evaluated via comparisons with other reanalyses and independent observations. This dataset provides global, 3-hourly estimates of the atmosphere from 1806 to 2015 by assimilating only surface pressure observations and prescribing sea surface temperature, sea ice concentration, and radiative forcings. Comparisons with independent observations, other reanalyses, and satellite products suggest that 20CRv3 can reliably produce atmospheric estimates on scales ranging from weather events to long-term climatic trends. Not only does 20CRv3 recreate a “best estimate” of the weather, including extreme events, it also provides an estimate of its confidence through the use of an ensemble. Surface pressure statistics suggest that these confidence estimates are reliable. Comparisons with independent upper-air observations in the Northern Hemisphere demonstrate that 20CRv3 has skill throughout the 20th century. Upper-air fields from 20CRv3 in the late 20th century and early 21st century correlate well with full-input reanalyses, and the correlation is predicted by the confidence fields from 20CRv3. The skill of analyzed 500hPa geopotential heights from 20CRv3 for 1979-2015 is comparable to that of modern operational 3- to 4-day forecasts. Finally, 20CRv3 performs well on climate timescales. Long time series and multidecadal averages of mass, circulation, and precipitation fields agree well with modern reanalyses and station- and satellite-based products. 20CRv3 is also able to capture trends in tropospheric layer temperatures that correlate well with independent products in the 20th century, placing recent trends in a longer historical context.
Observations are the foundation for understanding the climate system. Yet, currently available land meteorological data are highly fractured into various global, regional, and national holdings for different variables and time scales, from a variety of sources, and in a mixture of formats. Added to this, many data are still inaccessible for analysis and usage. To meet modern scientific and societal demands as well as emerging needs such as the provision of climate services, it is essential that we improve the management and curation of available land-based meteorological holdings. We need a comprehensive global set of data holdings, of known provenance, that is truly integrated both across essential climate variables (ECVs) and across time scales to meet the broad range of stakeholder needs. These holdings must be easily discoverable, made available in accessible formats, and backed up by multitiered user support. The present paper provides a high-level overview, based upon broad community input, of the steps that are required to bring about this integration. The significant challenge is to find a sustained means to realize this vision. This requires a long-term international program. The database that results will transform our collective ability to provide societally relevant research, analysis, and predictions in many weather- and climate-related application areas across much of the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.