Epithelial-mesenchymal transition (EMT) involving down-regulation of E-cadherin is thought to play a fundamental role during early steps of invasion and metastasis of carcinoma cells. The aim of our study was to elucidate the role of EMT regulators Snail, SIP1 (both are direct repressors of E-cadherin), and Twist (an activator of N-cadherin during Drosophila embryogenesis), in primary human gastric cancers. Expression of Snail, SIP1, and Twist was analyzed in 48 gastric carcinomas by real-time quantitative RT-PCR in paraffin-embedded and formalin-fixed tissues. The changes of expression levels of these genes in malignant tissues compared to matched non-tumorous tissues were correlated with the expression of E- and N-cadherin. From 28 diffuse-type gastric carcinomas analyzed reduced E-cadherin expression was detected in 11 (39%) cases compared to non-tumorous tissues. Up-regulated Snail could be found in 6 cases with reduced or negative E-cadherin expression. However, there was no correlation to increased SIP1 expression. Interestingly, we could detect abnormal expression of N-cadherin mRNA in 6 cases, which was correlated with Twist overexpression in 4 cases. From 20 intestinal-type gastric cancer samples reduced E-cadherin expression was found in 12 (60%) cases, which was correlated to up-regulation of SIP1, since 10 of these 12 cases showed elevated mRNA levels, whereas Snail, Twist, and N-cadherin were not up-regulated. We present the first study investigating the role of EMT regulators in human gastric cancer and provide evidence that an increase in Snail mRNA expression is associated with down-regulation of E-cadherin in diffuse-type gastric cancer. We detected abnormally positive or increased N-cadherin mRNA levels in the same tumors, probably due to overexpression of Twist. SIP1 overexpression could not be linked to down-regulated E-cadherin in diffuse-type tumors, but was found to be involved in the pathogenesis of intestinal-type gastric carcinoma. We conclude that EMT regulators play different roles in gastric carcinogenesis depending on the histological subtype.
Analysis of tumor-infiltrating lymphocytes (TIL) in primary human colorectal cancer (CRC) by in situ immunohistochemical staining supports the hypothesis that the adaptive immune response influences the course of human CRC. Specifically, high densities of TILs in the primary tumor are associated with good prognosis independent of other prognostic markers. However, the prognostic role of TILs in metastatic CRC lesions is unknown, as is their role in response or resistance to conventional chemotherapy. We analyzed the association of TIL densities at the invasive margin of CRC liver metastases with response to chemotherapy and progression-free survival in a set of 101 large section samples. High-resolution automated microscopy on complete tissue sections was used to objectively generate cell densities for CD3, CD8, granzyme B, or FOXP3 positive immune cells. A predictive scoring system using TIL densities was developed in a training set and tested successfully in an independent validation set. TIL densities at the invasive margin of liver metastases allowed the prediction of response to chemotherapy with a sensitivity of 79% and specificity of 100%. The association of high density values with longer progression-free survival under chemotherapy was statistically significant. Overall, these findings extend the impact of the local immune response on the clinical course from the primary tumor also to metastatic lesions. Because detailed quantification of TILs in metastatic lesions revealed a strong association with chemotherapy efficacy and prognosis, we suggest that the developed scoring system may be used as a predictive tool for response to chemotherapy in metastatic CRC. Cancer Res; 71(17); 5670-7. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.