Oilseed rape (Brassica napus L.) was formed~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent A n and C n subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.T he Brassicaceae are a large eudicot family (1) and include the model plant Arabidopsis thaliana. Brassicas have a propensity for genome duplications ( Fig. 1) and genome mergers (2). They are major contributors to the human diet and were among the earliest cultigens (3).B. napus (genome A n A n C n C n ) was formed by recent allopolyploidy between ancestors of B. oleracea (Mediterranean cabbage, genome C o C o ) and B. rapa (Asian cabbage or turnip, genome A r A r ) and is polyphyletic (2, 4), with spontaneous formation regarded by Darwin as an example of unconscious selection (5). Cultivation began in Europe during the Middle Ages and spread worldwide. Diversifying selection gave rise to oilseed rape (canola), rutabaga, fodder rape, and kale morphotypes grown for oil, fodder, and food (4, 6).The homozygous B. napus genome of European winter oilseed cultivar 'Darmor-bzh' was assembled with long-read [>700 base pairs (bp)] 454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequence (tables S1 to S5 and figs. S1 to S3) (7). Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence. A final assembly of 849.7 Mb was obtained with SOAP (8) and Newbler (Roche), with 89% nongapped sequence (tables S2 and S3). Unique mapping of 5× nonassembled 454 sequences from B. rapa ('Chiifu') or B. oleracea (' TO1000') assigned most of the 20,702 B. napus scaffolds to either the A n (8294) or the C n (9984) subgenomes (tables S4 and S5 and fig. S3). The assembly covers~79% of the 1130-Mb genome and includes 95.6% of Brassica expressed sequence tags (ESTs) (7). A single-nucleotide polymorphism (SNP) map (tables S6 to S9 and figs. S4 to S8) genetically anchored 712.3 Mb (84%) of the genome assembly, yielding pseudomolecules for the 19 chromosomes (table S10).The assembled C n subgenome (525.8 Mb) is larger than the A n subgenome (314.2 Mb), consistent with the relative sizes of the assembled C o genome of B. oleracea (540 Mb, 85% of thẽ 630-Mb genome) and the A r genome of B. rapa (312 Mb, 59% of the~530-Mb genome) (9-11). The B. napus assembly contains 34.8% transposable elements (TEs), less than the 40% estimated from raw reads (table...
Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
SummaryHomoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
MYCN amplification is a common feature of aggressive tumour biology in neuroblastoma. The MYCN transcription factor has been demonstrated to induce or repress expression of numerous genes. MicroRNAs (miRNA) are a recently discovered class of short RNAs that repress translation and promote mRNA degradation by sequence-specific interaction with mRNA. Here, we sought to analyse the role of MYCN in regulation of miRNA expression. Using a miRNA microarray containing 384 different miRNAs and a set of 160 miRNA real-time PCR assays to validate the microarray results, 7 miRNAs were identified that are induced by MYCN in vitro and are upregulated in primary neuroblastomas with MYCN amplification. Three of the seven miRNAs belong to the miR-106a and miR-17 clusters, which have previously been shown to be regulated by c-Myc. The miR-17-92 polycistron also acts as an oncogene in haematopoietic progenitor cells. We show here that miR-221 is also induced by MYCN in neuroblastoma. Previous studies have reported miR-221 to be overexpressed in several other cancer entities, but its regulation has never before been associated with Myc. We present evidence of miRNA dysregulation in neuroblastoma. Additionally, we report miRNA induction to be a new mechanism of gene expression downregulation by MYCN. ' 2007 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.