Maleimide, N-ethyl-maleimide (NEM), and N-methyl-maleimide (NMM) were identified as potent catalytic inhibitors of purified human topoisomerase II␣, whereas the ring-saturated analog succinimide was completely inactive. Catalytic inhibition was not abrogated by topoisomerase II mutations that totally abolish the effect of bisdioxopiperazine compounds on catalytic inhibition, suggesting a different mode of action by these maleimides. Furthermore, in DNA cleavage assay maleimide and NEM could antagonize etoposide-induced DNA double-strand breaks. Consistently, maleimide could antagonize the effect of topoisomerase II poisons in three different in vivo assays: 1) In an alkaline elution assay maleimide protected against etoposide-induced DNA damage. 2) In a band depletion assay maleimide reduced etoposide-induced trapping of topoisomerase II␣ and  on DNA. 3) In a clonogenic assay maleimide antagonized the cytotoxicity of etoposide and daunorubicin on four different cell lines of human and murine origin. at-MDR cell lines with reduced nuclear topoisomerase II␣ content are fully sensitive to maleimide, indicating that it is not a topoisomerase II poison in vivo. Our finding that topoisomerase II is sensitive to maleimide, NMM, and NEM but insensitive to succinimide demonstrates a strict requirement for the unsaturated ring bond for activity. We suggest that the observed antagonism in vitro and in vivo is caused by covalent modification of topoisomerase II cysteine residues reducing the amount of catalytically active enzyme sensitive to the action of topoisomerase II poisons.
By screening 1,990 compounds from the National Cancer Institute diversity set library against human topoisomerase IIA, we identified a novel catalytic topoisomerase II inhibitor NSC35866, a S 6 -substituted analogue of thioguanine. In addition to inhibiting the DNA strand passage reaction of human topoisomerase IIA, NSC35866 also inhibited its ATPase reaction. NSC35866 primarily inhibited DNA-stimulated ATPase activity, whereas DNA-independent ATPase activity was less sensitive to inhibition. We compared the mode of topoisomerase II ATPase inhibition induced by NSC35866 with that of 12 other substituted purine analogues of different chemical classes. The ability of thiopurines with free SH functionalities to inhibit topoisomerase II ATPase activity was completely abolished by DTT, suggesting that these thiopurines inhibit topoisomerase II ATPase activity by covalently modifying free cysteine residues. In contrast, NSC35866 as well as two O 6 -substituted guanine analogues, O 6 -benzylguanine and NU2058, could inhibit topoisomerase II ATPase activity in the presence of DTT, indicating that they have a different mechanism of inhibition. NSC35866 did not increase the level of topoisomerase II covalent cleavable complexes with DNA, indicating that it is a catalytic inhibitor and not a poison. NSC35866 was also capable of inducing a salt-stable complex of topoisomerase II on closed circular DNA. In accordance with these biochemical data, NSC35866 could antagonize etoposide-induced cytotoxicity and DNA breaks in human and murine cancer cells, confirming that NSC35866 also functions as a catalytic topoisomerase II inhibitor in cells. (Cancer Res 2005; 65(16): 7470-7)
3-Methoxy-4,5,6,7-tetrahydro-1,2-benzisoxazol-4-one (20a), or the corresponding 3-ethoxy analogue (20b), and 3-chloro-4,5,6, 7-tetrahydro-1,2-benzisothiazol-4-one (51) were synthesized by regioselective chromic acid oxidation of the respective bicyclic tetrahydrobenzenes 19a,b and 50, and they were used as key intermediates for the syntheses of the target zwitterionic 3-isoxazolols 8-15 and 3-isothiazolols 16 and 17, respectively. These reaction sequences involved different reductive processes. Whereas (RS)-4-amino-3-hydroxy-4,5,6,7-tetrahydro-1,2-benzisoxazole (8, exo-THPO) was synthesized via aluminum amalgam reduction of oxime 22a or 22b, compounds 9, 11-13, and 15-17 were obtained via reductive aminations. Compound 10 was synthesized via N-ethylation of the N-Boc-protected primary amine 25. The enantiomers of 8 were obtained in high enantiomeric purities (ee >/= 99.1%) via the diastereomeric amides 32 and 33, synthesized from the primary amine 23b and (R)-alpha-methoxyphenylacetyl chloride and subsequent separation by preparative HPLC. The enantiomers of 9 were prepared analogously from the secondary amine 27. On the basis of X-ray crystallographic analyses, the configuration of oxime 22a was shown to be E and the absolute configurations of (-)-8 x HCl and (+)-9 x HBr were established to be R. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation and primary cultures of mouse cortical neurons and glia cells (astrocytes). Whereas the classical GABA uptake inhibitor, (R)-nipecotic acid (2), nonselectively inhibits neuronal (IC(50) = 12 microM) and glial (IC(50) = 16 microM) GABA uptake and 4,5,6,7-tetrahydroisoxazolo¿4,5-cpyridin-3-ol (1, THPO) shows some selectivity for glial (IC(50) = 268 microM) versus neuronal (IC(50) = 530 microM) GABA uptake, exo-THPO (8) was shown to be more potent as an inhibitor of glial (IC(50) = 200 microM) rather than neuronal (IC(50) = 900 microM) GABA uptake. This selectivity was more pronounced for 9, which showed IC(50) values of 40 and 500 microM as an inhibitor of glial and neuronal GABA uptake, respectively. These effects of 8 and 9 proved to be enantioselective, (R)-(-)-8 and (R)-(+)-9 being the active inhibitors of both uptake systems. The selectivity of 9 as a glial GABA uptake inhibitor was largely lost by replacing the N-methyl group of 9 by an ethyl group, compound 10 being an almost equipotent inhibitor of glial (IC(50) = 280 microM) and neuronal (IC(50) = 400 microM) GABA uptake. The remaining target compounds, 11-17, were very weak or inactive as inhibitors of both uptake systems. Compounds 9-13 and 15 were shown to be essentially inactive against isoniazide-induced convulsions in mice after subcutaneous administration. The isomeric pivaloyloxymethyl derivatives of 9, compounds 43 and 44, were synthesized and tested as potential prodrugs in the isoniazide animal model. Both 43 (ED(50) = 150 micromol/kg) and 44 (ED(50) = 220 micromol/kg) showed anticonvulsant effects, and this effect of 43 was s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.