Circular RNAs (circRNAs), a novel class of ubiquitous and intriguing noncoding RNA, have been found in a number of eukaryotes but not yet basidiomycetes. In this study, we identified 73 circRNAs from 39.28 million filtered RNA reads from the basidiomycete Cryptococcus neoformans JEC21 using next-generation sequencing (NGS) and the bioinformatics tool circular RNA identification (CIRI). Furthermore, mapping of newly found circRNAs to the genome showed that 73.97% of the circRNAs originated from exonic regions, whereas 20.55% were from intergenic regions and 5.48% were from intronic regions. Enrichment analysis of circRNA host genes was conducted based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases. The results reveal that host genes are mainly responsible for primary metabolism and, interestingly, ribosomal protein production. Furthermore, we uncovered a high-level circRNA that was a transcript from the guanosine triphosphate (GTP)ase gene CNM01190 (gene ID: 3255052) in our yeast. Coincidentally, YPT5, CNM01190′s ortholog of the GTPase in Schizosaccharomyces pombe, protists, and humans, has already been proven to generate circRNAs. Additionally, overexpression of RNA debranching enzyme DBR1 had varied influence on the expression of circRNAs, indicating that multiple circRNA biosynthesis pathways exist in C. neoformans. Our study provides evidence for the existence of stable circRNAs in the opportunistic human pathogen C. neoformans and raises a question regarding their role related to pathogenesis in this yeast.
FLC family, a conserved fungus-specific family of integral membrane proteins, has been demonstrated to play important roles in flavin transport, growth, and virulence in several fungi but not yet in Cryptococcus neoformans. In this study, we have identified the single homologue of flavin adenine dinucleotide transporter in the opportunistic pathogen C. neoformans. The computational and phylogenetic analysis confirmed the fungal specificity of cryptococcal Flc1 protein, thus providing a promising drug target for clinical treatment of cryptococcosis. Disruption of FLC1 conferred sensitivity to 1% Congo red and 0.02% SDS, as well as leading to impaired chitin distribution in cell wall as observed with Calcofluor White staining, which collectively indicated the roles of FLC1 in maintenance of cell wall integrity. Further investigations revealed the defects of flc1Δ mutant in resistance to poor nutrition and elevated temperatures, and the ability to undergo invasive growth under nutrient-depleted conditions was reduced as well in flc1Δ mutant, suggesting the roles of Flc1 in response to environmental stresses. More importantly, our results showed that flc1Δ mutant exhibited severe susceptibility to antifungal aminoglycosides (hygromycin B and geneticin) and amphotericin B, but developed multidrug resistance to flucytosine and rapamycin, which provided great hints for therapeutic failure of cryptococcosis in clinic with the standard combination therapy. Finally, typical virulence factors including melanin biosynthesis and capsule formation in flc1Δ mutant were reduced as well, indicating the possible involvement of Flc1 in virulence.
Highly conserved, the Snf1/AMPK is a central regulator of carbon metabolism and energy production in the eukaryotes. However, its function in filamentous fungi has not been well established. In this study, we reported functional characterization of Snf1/AMPK in the growth, development and secondary metabolism in the filamentous fungus Pestalotiopsis microspora. By deletion of the yeast SNF1 homolog, we found that it regulated the utilization of carbon sources, e.g., sucrose, demonstrating a conserved function of this kinase in filamentous fungus. Importantly, several novel functions of SNF1 were unraveled. For instance, the deletion strain displayed remarkable retardation in vegetative growth and pigmentation and produced a diminished number of conidia, even in the presence of the primary carbon source glucose. Deletion of the gene caused damages in the cell wall as shown by its hypersensitivities to Calcofluor white and Congo red, suggesting a critical role of Snf1 in maintaining cell wall integrity. Furthermore, the mutant strain Δsnf1 was hypersensitive to stress, e.g., osmotic pressure (1 M sorbitol), drug G418 and heat shock, though the mechanism remains to be illustrated. Significantly, disruption of the gene altered the production of secondary metabolites. By high-performance liquid chromatography (HPLC) profiling, we found that Δsnf1 barely produced secondary metabolites, e.g., the known product pestalotiollide B. This study suggests that Snf1 is a key regulator in filamentous fungus Pestalotiopsis microspora concerting carbon metabolism and the filamentous growth, conidiation, cell wall integrity, stress tolerance and the biosynthesis of secondary metabolites.
BackgroundThe canonical heterotrimeric G protein-cAMP/PKA pathway regulates numerous cellular processes in filamentous fungi. Chaetomium globosum, a saprophytic fungus, is known for producing many secondary metabolites, including cytotoxic chaetoglobosin A (ChA), as well as abundant cellulase and xylanase.ResultsHere we report on the functional characterization of this signaling pathway in C. globosum. We blocked the pathway by knocking down the putative Gα-encoding gene gna1 (in the pG14 mutant). This led to impaired cellulase production and significantly decreased transcription of the major cellulase and xylanase genes. Almost all the glycohydrolase family genes involved in cellulose degradation were downregulated, including the major cellulase genes, cel7a, cel6a, egl1, and egl2. Importantly, the expression of transcription factors was also found to be regulated by gna1, especially Ace1, Clr1/2 and Hap2/3/5 complex. Additionally, carbon metabolic processes including the starch and sucrose metabolism pathway were substantially diminished, as evidenced by RNA-Seq profiling and quantitative reverse transcription (qRT)-PCR. Interestingly, these defects could be restored by simultaneous knockdown of the pkaR gene encoding the regulatory subunit of cAMP-dependent PKA (in the pGP6 mutant) or supplement of the cAMP analog, 8-Br-cAMP. Moreover, the Gα-cAMP/PKA pathway regulating cellulase production is modulated by environmental signals including carbon sources and light, in which VelB/VeA/LaeA complex and ENVOY probably work as downstream effectors.ConclusionThese results revealed, for the first time, the positive role of the heterotrimeric Gα-cAMP/PKA pathway in the regulation of cellulase and xylanase utilization in C. globosum.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-1008-6) contains supplementary material, which is available to authorized users.
Cryptococcus neoformans is a basidiomycetous pathogenic yeast that causes fatal infections in both immunocompetent and immunocompromised patients. Regulation on the production of its virulence factors is not fully understood. Here we reported the characterization of a gene, named CVH1(CNA06260), encoding a Drosophila Vilse-like RhoGAP homolog, which is hallmarked by three conserved functional domains: WW, MyTH4 and RhoGAP. Phylogenetic analysis suggests that CVH1 is highly conserved from protists to mammals and interestingly in basidiomycetes, but absent in plants or Ascomycota and other lower fungi. This phylogenetic distribution indicates an evolutionary link among these groups of organisms. Functional analyses demonstrated that CVH1 was involved in stress tolerance and virulence factor production. By disrupting CVH1, we created a second mutant cvh1Δ with the CRISPR-Cas9 editing tool. The mutant strain exhibited hypersensitivity to osmotic stress by 2 M sorbitol and NaCl, suggesting defects in the HOG signaling pathway and an interaction of Cvh1 with the HOG pathway. Hypersensitivity of cvh1Δ to 1% Congo red and 0.01% SDS suggests that the cell wall integrity was impaired in the mutant. And cvh1Δ hardly produced the pigment melanin and capsule. Our study for the first time demonstrates that the fungal Vilse-like RhoGAP CVH1 is an important regulator of multiple biological processes in C. neoformans, and provides novel insights into the regulatory circuit of stress resistance/cell wall integrity, and laccase and capsule synthesis in C. neoformans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.