The C-peptide of proinsulin is important for the biosynthesis of insulin but has for a long time been considered to be biologically inert. Data now indicate that C-peptide in the nanomolar concentration range binds specifically to cell surfaces, probably to a G protein-coupled surface receptor, with subsequent activation of Ca(2+)-dependent intracellular signaling pathways. The association rate constant, K(ass), for C-peptide binding to endothelial cells, renal tubular cells, and fibroblasts is approximately 3. 10(9) M(-1). The binding is stereospecific, and no cross-reaction is seen with insulin, proinsulin, insulin growth factors I and II, or neuropeptide Y. C-peptide stimulates Na(+)-K(+)-ATPase and endothelial nitric oxide synthase activities. Data also indicate that C-peptide administration is accompanied by augmented blood flow in skeletal muscle and skin, diminished glomerular hyperfiltration, reduced urinary albumin excretion, and improved nerve function, all in patients with type 1 diabetes who lack C-peptide, but not in healthy subjects. The possibility exists that C-peptide replacement, together with insulin administration, may prevent the development or retard the progression of long-term complications in type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.