The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
BackgroundThere is a rapidly increasing amount of de novo genome assembly using next-generation sequencing (NGS) short reads; however, several big challenges remain to be overcome in order for this to be efficient and accurate. SOAPdenovo has been successfully applied to assemble many published genomes, but it still needs improvement in continuity, accuracy and coverage, especially in repeat regions.FindingsTo overcome these challenges, we have developed its successor, SOAPdenovo2, which has the advantage of a new algorithm design that reduces memory consumption in graph construction, resolves more repeat regions in contig assembly, increases coverage and length in scaffold construction, improves gap closing, and optimizes for large genome.ConclusionsBenchmark using the Assemblathon1 and GAGE datasets showed that SOAPdenovo2 greatly surpasses its predecessor SOAPdenovo and is competitive to other assemblers on both assembly length and accuracy. We also provide an updated assembly version of the 2008 Asian (YH) genome using SOAPdenovo2. Here, the contig and scaffold N50 of the YH genome were ~20.9 kbp and ~22 Mbp, respectively, which is 3-fold and 50-fold longer than the first published version. The genome coverage increased from 81.16% to 93.91%, and memory consumption was ~2/3 lower during the point of largest memory consumption.
COVID-19 disease, caused by SARS-CoV-2 infection, has resulted in more than 15.5 million infections and 634,000 deaths worldwide. A recent study of hospitals in New York City, at the initial epicenter of the COVID-19 pandemic in the United States, reported that, during March 2020, 21% of patients hospitalized with confirmed COVID-19 died 1 . These findings are aligned with outcomes observed in the Mount Sinai Health System 2,3 . There are currently no curative or preventive therapies for COVID-19, highlighting the need to enhance current understanding of SARS-CoV-2 pathogenesis for the rational development of therapeutics.Recent studies have suggested that, in addition to direct viral damage, uncontrolled inflammation contributes to disease severity in 5 ). Consistent with this hypothesis, high levels of inflammatory markers, including C-reactive protein (CRP), ferritin and D-dimer, high neutrophil-to-lymphocyte ratio [6][7][8][9] and increased levels of inflammatory cytokines and chemokines 6,8-11 have been observed in patients with severe diseases. Pathogenic inflammation, also referred to as cytokine storm, shares similarities with what was previously seen in patients infected with other severe coronaviruses, including SARS-CoV and Middle East respiratory syndrome coronavirus 12 , and bears similarities to cytokine release syndrome (CRS) observed in patients with cancer treated with chimeric antigen receptor-modified (CAR) T cells 13 . Tocilizumab, an IL-6 receptor inhibitor, is a US Food and Drug Administration (FDA)-approved treatment for CRS in patients receiving CAR T cells 14 . Several single-center studies have used IL-6 inhibitors to treat patients with COVID-19 with some clinical benefits 15 and reported failures 14 . Beyond IL-6, several cytokines have been shown to be elevated in CRS and to contribute to tissue damage. TNF-α is important in nearly all acute inflammatory reactions, acting as an amplifier of inflammation. TNF-α blockade has been used to treat more than ten different autoimmune inflammatory diseases, suggesting that this might be a potential therapeutic approach to reduce organ damage in patients with ). IL-1 is also a highly active pro-inflammatory cytokine, and monotherapy blocking
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.