The dimensionless thermoelectric figure of merit (ZT) in bismuth antimony telluride (BiSbTe) bulk alloys has remained around 1 for more than 50 years. We show that a peak ZT of 1.4 at 100 degrees C can be achieved in a p-type nanocrystalline BiSbTe bulk alloy. These nanocrystalline bulk materials were made by hot pressing nanopowders that were ball-milled from crystalline ingots under inert conditions. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, ZT is about 1.2 at room temperature and 0.8 at 250 degrees C, which makes these materials useful for cooling and power generation. Cooling devices that use these materials have produced high-temperature differences of 86 degrees , 106 degrees , and 119 degrees C with hot-side temperatures set at 50 degrees, 100 degrees, and 150 degrees C, respectively. This discovery sets the stage for use of a new nanocomposite approach in developing high-performance low-cost bulk thermoelectric materials.
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.
By ball milling alloyed bulk crystalline ingots into nanopowders and hot pressing them, we had demonstrated high figure-of-merit in nanostructured bulk bismuth antimony telluride. In this study, we use the same ball milling and hot press technique, but start with elemental chunks of bismuth, antimony, and tellurium to avoid the ingot formation step. We show that a peak ZT of about 1.3 in the temperature range of 75 and 100 degrees C has been achieved. This process is more economical and environmentally friendly than starting from alloyed bulk crystalline ingots. The ZT improvement is caused mostly by the lower thermal conductivity, similar as the case using ingot. Transmission electron microscopy observations of the microstructures suggest that the lower thermal conductivity is mainly due to the increased phonon scattering from the increased grain boundaries of the nanograins, precipitates, nanodots, and defects. Our material also exhibits a ZT of 0.7 at 250 degrees C, similar to the value obtained when ingot was used. This study demonstrates that high ZT values can be achieved in nanostructured bulk materials with ball milling elemental chunks, suggesting that the approach can be applied to other materials that are hard to be made into ingot, in addition to its advantage of lower manufacturing cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.