Recently RAD51C mutations were identified in families with breast and ovarian cancer1. This observation prompted us to investigate the role of RAD51D in cancer susceptibility. We identified eight inactivating RAD51D mutations in unrelated individuals from 911 breast-ovarian cancer families compared with one in 1060 controls (P=0.01). The association was principally with ovarian cancer with three mutations identified in the 59 pedigrees with three or more ovarian cancer cases (P=0.0005). The relative risk of ovarian cancer for RAD51D mutation carriers was estimated to be 6.30 (95%CI: 2.86-13.85; P=4.8×10−6). By contrast, the relative risk of breast cancer was estimated to be 1.32 (95%CI: 0.59-2.96; P=0.50). These data indicate that RAD51D mutation testing may have clinical utility in individuals with ovarian cancer and their families. Moreover, we show that cells deficient in RAD51D are sensitive to treatment with a PARP inhibitor, suggesting a possible therapeutic approach for cancers arising in RAD51D mutation carriers.
Previous studies have suggested a genetic component in susceptibility to hypoxia-induced pulmonary hypertension. We therefore estimated the prevalence of high-altitude pulmonary hypertension (HAPH) in a Kyrgyz population and whether the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene associates with HAPH. An electrocardiographic survey of 741 highlanders demonstrated electrocardiogram signs of cor pulmonale in 14% of subjects. Pulmonary artery hemodynamics measured in an independent group of 136 male highlanders with symptoms of dyspnea at altitude revealed established pulmonary hypertension (mean pulmonary artery pressure [MPAP] > or = 25 mm Hg) in 20%. However, 26% of the normal subjects demonstrated an exaggerated response (twofold or greater increase in MPAP) to inhalation of 11% oxygen, and were classified as hyperresponsive. Ten-year follow-up of this group revealed increases in the MPAP, but not in normal subjects. Comparison of ACE I/D genotypes in the catheterized group revealed a threefold higher frequency of the I/I genotype in highlanders with HAPH, compared with normal highlanders (chi2 = 11.59, p = 0.003). In addition, MPAP was higher in highlanders with the I/I genotype (26.9 +/- 4.0 mm Hg) compared with the I/D genotype (20.6 +/- 1.2 mm Hg) or the D/D genotype (18.3 +/- 0.9 mm Hg) (p < 0.05). We conclude that HAPH is associated with ACE I/D genotype among Kyrgyz highlanders and the development of HAPH in this population and may be predicted by hyperresponsiveness to acute hypoxia.
IntroductionTamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen.MethodsThis was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis.ResultsIn tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups.ConclusionsCYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.
Recent genome-wide association studies have identified a breast cancer susceptibility locus on 16q12 with an unknown biological basis. We used a set of single nucleotide polymorphism (SNP) markers to generate a fine-scale map and narrowed the region of association to a 133 kb DNA segment containing the largely uncharacterized hypothetical gene LOC643714, a short intergenic region and the 5' end of TOX3. Re-sequencing this segment in European subjects identified 293 common polymorphisms, including a set of 26 highly correlated candidate causal variants. By evaluation of these SNPs in five breast cancer case-control studies involving more than 23 000 subjects from populations of European and Southeast Asian ancestry, all but 14 variants could be excluded at odds of <1:100. Most of the remaining variants lie in the intergenic region, which exhibits evolutionary conservation and open chromatin conformation, consistent with a regulatory function. African-American case-control studies exhibit a different pattern of association suggestive of an additional causative variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.