Evolutionarily conserved across eukaryotic cells, macroautophagy (herein autophagy) is an intracellular catabolic degradative process targeting damaged and superfluous cellular proteins, organelles, and other cytoplasmic components. Mechanistically, it involves formation of double-membrane vesicles called autophagosomes that capture cytosolic cargo and deliver it to lysosomes, wherein the breakdown products are eventually recycled back to the cytoplasm. Dysregulation of autophagy often results in various disease manifestations, including neurodegeneration, microbial infections, and cancer. In the case of cancer, extensive attention has been devoted to understanding the paradoxical roles of autophagy in tumor suppression and tumor promotion. In this review, while we summarize how this self-eating process is implicated at various stages of tumorigenesis, most importantly, we address the link between autophagy and hallmarks of cancer. This would eventually provide a better understanding of tumor dependence on autophagy. We also discuss how therapeutics targeting autophagy can counter various transformations involved in tumorigenesis. Finally, this review will provide a novel insight into the mutational landscapes of autophagy-related genes in several human cancers, using genetic information collected from an array of cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.