We present the latest progress on the industrial scale coating facility for the Advanced Telescope for High-ENergy Astrophysics (ATHENA) mission. The facility has been successfully commissioned and tested, completing an important milestone in preparation of the Silicon Pore Optics (SPO) production capability. We qualified the coating facility by depositing iridium and boron carbide thin films in different configurations under various process conditions including pre-coating in-system plasma cleaning. The thin films were characterized with X-Ray Reflectometry (XRR) using laboratory X-ray sources Cu K-α at 8.048 keV and PTB's four-crystal monochromator beamline at the synchrotron radiation facility BESSY II in the energy range from 3.6 keV to 10.0 keV. Additional X-ray Photoelectron Spectroscopy (XPS) measurements were performed with Al K-α radiation to analyze the composition of the deposited thin films.
Excellent X-ray reflective mirror coatings are key in order to meet the performance requirements of the ATHENA telescope. The baseline coating design of ATHENA was initially formed by Ir/B 4 C but extensive studies have identified critical issues with the stability of the B 4 C top layer which shows strong evolution over time and appears incompatible with the industrialization processes required for the production of mirror modules. Motivated by the need for a compatible top layer material to improve the telescope performance at low energies and based on simulated performance, a SiC top layer has been selected as the best substitute to B 4 C. We report the latest development of Ir/SiC bilayer coatings optimized for ATHENA and the characterization of coating performance and stability.
In the frame of the development of the Advanced Telescope for High-ENergy Astrophysics (Athena) mission, currently in phase A, ESA is continuing to mature the optics technology and the associated mass production techniques. These efforts are driven by the programmatic and technical requirement of reaching TRL 6 prior to proposing the mission for formal adoption (planned for 2020). A critical part of the current phase A preparation activities is addressing the industrialization of the Silicon Pore Optics mirror plates coating. This include the transfer of the well-established coating processes and techniques, performed at DTU Space, to an industrial scale facility suitable for coating the more than 100,000 mirror plates required for Athena. In this paper, we explain the considerations for the planned coating facility including, requirement specification, equipment and supplier selection, preparing the coating facility for the deposition equipment, designing and fabrication.
The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m 2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.