Abstract.In collaboration with the health ministries that we serve and other partners, we set out to complete the multiple-country Global Trachoma Mapping Project. To maximize the accuracy and reliability of its outputs, we needed in-built, practical mechanisms for quality assurance and quality control. This article describes how those mechanisms were created and deployed. Using expert opinion, computer simulation, working groups, field trials, progressively accumulated in-project experience, and external evaluations, we developed 1) criteria for where and where not to undertake population-based prevalence surveys for trachoma; 2) three iterations of a standardized training and certification system for field teams; 3) a customized Android phone–based data collection app; 4) comprehensive support systems; and 5) a secure end-to-end pipeline for data upload, storage, cleaning by objective data managers, analysis, health ministry review and approval, and online display. We are now supporting peer-reviewed publication. Our experience shows that it is possible to quality control and quality assure prevalence surveys in such a way as to maximize comparability of prevalence estimates between countries and permit high-speed, high-fidelity data processing and storage, while protecting the interests of health ministries.
BackgroundThe clinical signs of active trachoma are often present in the absence of ocular Chlamydia trachomatis infection in low prevalence and mass treated settings. Treatment decisions are currently based on the prevalence of clinical signs, and this may result in the unnecessary distribution of mass antibiotic treatment. We aimed to evaluate the diagnostic accuracy of a prototype point-of-care (POC) test, developed for field diagnosis of ocular C. trachomatis, in low prevalence settings of The Gambia and Senegal.Methodology/Principal FindingsThree studies were conducted, two in The Gambia and one in Senegal. Children under the age of 10 years were screened for the clinical signs of trachoma. Two ocular swabs were taken from the right eye. The first swab was tested by the POC test in the field and the result independently graded by two readers. The second swab was tested for the presence of C. trachomatis by Amplicor Polymerase Chain Reaction. In Senegal, measurements of humidity and temperature in the field were taken. A total of 3734 children were screened, 950 in the first and 1171 in the second Gambian study, and 1613 in Senegal. The sensitivity of the prototype POC test ranged between 33.3–67.9%, the specificity between 92.4–99.0%, the positive predictive value between 4.3–21.0%, and the negative predictive value between 98.0–99.8%. The rate of false-positives increased markedly at temperatures above 31.4°C and relative humidities below 11.4%.Conclusions/SignificanceIn its present format, this prototype POC test is not suitable for field diagnosis of ocular C. trachomatis as its specificity decreases in hot and dry conditions: the environment in which trachoma is predominantly found. In the absence of a suitable test for infection, trachoma diagnosis remains dependent on clinical signs. Under current WHO recommendations, this is likely resulting in the continued mass treatment of non-infected communities.
BackgroundVertical control and elimination programs focused on specific neglected tropical diseases (NTDs) can achieve notable success by reducing the prevalence and intensity of infection. However, many NTD-endemic countries have not been able to launch or scale-up programs because they lack the necessary baseline data for planning and advocacy. Each NTD program has its own mapping guidelines to collect missing data. Where geographic overlap among NTDs exists, an integrated mapping approach could result in significant resource savings. We developed and field-tested an innovative integrated NTD mapping protocol (Integrated Threshold Mapping (ITM) Methodology) for lymphatic filariasis (LF), trachoma, schistosomiasis and soil-transmitted helminths (STH).Methodology/Principal FindingsThe protocol is designed to be resource-efficient, and its specific purpose is to determine whether a threshold to trigger public health interventions in an implementation unit has been attained. The protocol relies on World Health Organization (WHO) recommended indicators in the disease-specific age groups. For each disease, the sampling frame was the district, but for schistosomiasis, the sub-district rather than the ecological zone was used. We tested the protocol by comparing it to current WHO mapping methodologies for each of the targeted diseases in one district each in Mali and Senegal. Results were compared in terms of public health intervention, and feasibility, including cost. In this study, the ITM methodology reached the same conclusions as the WHO methodologies regarding the initiation of public health interventions for trachoma, LF and STH, but resulted in more targeted intervention recommendations for schistosomiasis. ITM was practical, feasible and demonstrated an overall cost saving compared with the standard, non-integrated, WHO methodologies.Conclusions/SignificanceThis integrated mapping tool could facilitate the implementation of much-needed programs in endemic countries.
BackgroundTrichiasis is present when one or more eyelashes touches the eye. Uncorrected, it can cause blindness. Accurate estimates of numbers affected, and their geographical distribution, help guide resource allocation.MethodsWe obtained district-level trichiasis prevalence estimates in adults for 44 endemic and previously-endemic countries. We used (1) the most recent data for a district, if more than one estimate was available; (2) age- and sex-standardized corrections of historic estimates, where raw data were available; (3) historic estimates adjusted using a mean adjustment factor for districts where raw data were unavailable; and (4) expert assessment of available data for districts for which no prevalence estimates were available.FindingsInternally age- and sex-standardized data represented 1,355 districts and contributed 662 thousand cases (95% confidence interval [CI] 324 thousand–1.1 million) to the global total. Age- and sex-standardized district-level prevalence estimates differed from raw estimates by a mean factor of 0.45 (range 0.03–2.28). Previously non- stratified estimates for 398 districts, adjusted by ×0.45, contributed a further 411 thousand cases (95% CI 283–557 thousand). Eight countries retained previous estimates, contributing 848 thousand cases (95% CI 225 thousand-1.7 million). New expert assessments in 14 countries contributed 862 thousand cases (95% CI 228 thousand–1.7 million). The global trichiasis burden in 2016 was 2.8 million cases (95% CI 1.1–5.2 million).InterpretationThe 2016 estimate is lower than previous estimates, probably due to more and better data; scale-up of trichiasis management services; and reductions in incidence due to lower active trachoma prevalence.
Background: Mass drug administration (MDA) with azithromycin is a cornerstone of the trachoma elimination strategy. Although the global prevalence of active trachoma has declined considerably, prevalence persists or even increases in some communities and districts. To increase understanding of MDA impact, we investigated the prevalence of active trachoma and ocular C. trachomatis prevalence, organism load, and circulating strains at baseline and one-year post-MDA in The Gambia and Senegal. Methods: Pre-and one-year post-MDA, children aged 0-9 years were examined for clinical signs of trachoma in six Gambian and 12 Senegalese villages. Ocular swabs from each child's right conjunctiva were tested for evidence of ocular C. trachomatis infection and organism load (ompA copy number), and ompA and multi-locus sequence typing (MLST) was performed. Results: A total of 1171 children were examined at baseline and follow-up in The Gambia. Active trachoma prevalence decreased from 23.9% to 17.7%, whereas ocular C. trachomatis prevalence increased from 3.0% to 3.8%. In Senegal, 1613 and 1771 children were examined at baseline and follow-up, respectively. Active trachoma prevalence decreased from 14.9% to 8.0%, whereas ocular C. trachomatis prevalence increased from 1.8% to 3.6%. Higher organism load was associated with having active trachoma and severe inflammation. Sequence typing demonstrated that all Senegalese samples were genovar A, whereas Gambian samples were a mix of genovars A and B. MLST provided evidence of clustering at village and household levels and demonstrated differences of strain variant frequencies in Senegal, indicative of an "outbreak". MLST, including partial ompA typing, provided greater discriminatory power than complete ompA typing. Conclusions: We found that one round of MDA led to an overall decline in active trachoma prevalence but no impact on ocular C. trachomatis infection, with heterogeneity observed between villages studied. This could not be explained by MDA coverage or number of different circulating strains pre-and post-MDA. The poor correlation between active trachoma and infection prevalence supports the need for further work on alternative indicators to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.