Current understanding on the mechanisms of brain injury and neurodegeneration highlights an appreciation of multicellular interactions within the neurovascular unit (NVU), which include the evolution of blood-brain barrier (BBB) damage, neuronal cell death or degeneration, glial reaction, and immune cell infiltration. Aging is an important factor that influences the integrity of the NVU. The age-related physiological or pathological changes in the cellular components of the NVU have been shown to increase the vulnerability of the NVU to ischemia/reperfusion injury or neurodegeneration, and to result in deteriorated brain damage. This review describes the impacts of aging on each NVU component and discusses the mechanisms by which aging increases NVU sensitivity to stroke and neurodegenerative diseases. Prophylactic or therapeutic perspectives that may delay or diminish aging and thus prevent the incidence of these neurological disorders will also be reviewed.
ST2, amemberoftheinterleukin(IL)1receptorfamily,anditsligandIL-33playcriticalrolesinimmuneregulationandinflammatoryresponses. This study explores the roles of endogenous IL-33/ST2 signaling in ischemic brain injury and elucidates the underlying mechanisms of action. The expression of IL-33 rapidly increased in oligodendrocytes and astrocytes after 60 min transient middle cerebral artery occlusion (tMCAO). ST2 receptor deficiency exacerbated brain infarction 3 d after tMCAO as well as distal permanent MCAO. ST2 deficiency also aggravated neurologicaldeficitsupto7daftertMCAO.Conversely,intracerebroventricularinfusionsofIL-33aftertMCAOattenuatedbraininfarction.Flow cytometry analyses demonstrated high levels of ST2 expression on microglia, and this expression was dramatically enhanced after tMCAO. The absence of ST2 enhanced the expression of M1 polarization markers on microglia/macrophages, and impaired the expression of M2 polarization markers after tMCAO. In vitro studies on various types of cultures and coculture systems confirmed that IL-33/ST2 signaling potentiated expression of IL-10 and other M2 genes in primary microglia. The activation of ST2 on microglia led to a protective phenotype that enhanced neuronal survival against oxygen glucose deprivation. Further in vitro studies revealed that IL-33-activated microglia released IL-10, and that this was critical for their neuroprotective effects. Similarly, intracerebroventricular infusions of IL-33 into IL-10 knockout mice failed to provide neuroprotection against tMCAO in vivo. These results shed new light on the IL-33/ST2 axis as an immune regulatory mechanism that serves as a natural brake on the progression of ischemic brain injury.
Choroidal neovascularization (CNV) is an important characteristic of advanced wet age‐related macular degeneration (AMD) and leads to severe visual impairment among elderly patients. Previous studies have demonstrated that melatonin induces several biological effects related to antioxidation, anti‐inflammation, and anti‐angiogenesis. However, the role of melatonin in CNV, and its underlying mechanisms, has not been investigated thus far. In this study, we found that melatonin administration significantly reduced the scale and volume of CNV lesions, suppressed vascular leakage, and inhibited the capacity of vascular proliferation in the laser‐induced mouse CNV model. Additionally, the results also show that the melatonin‐treated retinal microglia in the laser‐induced mice exhibited enhanced expression of M1‐type markers, such as iNOS, CCL‐3, CCL‐5, and TNF‐α, as well as decreased production of M2‐type markers, such as Arg‐1, Fizz‐1, IL‐10, YM‐1, and CD206, indicating that melatonin switched the macrophage/microglia polarization from pro‐angiogenic M2 phenotype to anti‐angiogenic M1 phenotype. Furthermore, the RhoA/ROCK signaling pathway was activated during CNV formation, yet was suppressed after an intraperitoneal injection of melatonin. In conclusion, melatonin attenuated CNV, reduced vascular leakage, and inhibited vascular proliferation by switching the macrophage/microglia polarization from M2 phenotype to M1 phenotype via inhibition of RhoA/ROCK signaling pathway in CNV. This suggests that melatonin could be a novel agent for the treatment of AMD.
Retinopathy of prematurity (ROP) is a retinopathy characterized by retinal neovascularization (RNV) occurring in preterm infants treated with high concentrations of oxygen and may lead to blindness in severe cases. Currently, anti-VEGF therapy is a major treatment for ROP, but it is costly and may cause serious complications. The previous study has demonstrated that melatonin exerted neuroprotective effect against retinal ganglion cell death induced by hypoxia in neonatal rats. However, whether melatonin is anti-angiogenic and neuroglial protective in the progression of ROP remains unknown. Thus, this study was to investigate the effect of melatonin on RNV and neuroglia in the retina of oxygen-induced retinopathy (OIR) mice. The results showed a reduction in retinal vascular leakage in OIR mice after melatonin treatment. Besides, the size of retinal neovascular and avascular areas, the number of preretinal neovascular cell nuclei, and the number of proliferative vascular endothelial cells within the neovascular area were significantly decreased in mice treated with melatonin. After oxygen-induced injury, the density of astrocytes was decreased, accompanied by morphologic and functional changes of astrocytes. Besides, retinal microglia were also activated. Meanwhile, the levels of inflammatory factors were elevated. However, these pathologic processes were all hindered by melatonin treatment. Furthermore, HIF-1α-VEGF pathway was activated in the retina of OIR mice, yet was suppressed in melatonin-treated OIR mice retinas. In conclusion, melatonin prevented pathologic neovascularization, protected neuroglial cells, and exerts anti-inflammation effect via inhibition of HIF-1α-VEGF pathway in OIR retinas, suggesting that melatonin could be a promising therapeutic agent for ROP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.