Over the past several years, the term PFAS (per- and polyfluoroalkyl substances) has grown to be emblematic of environmental contamination, garnering public, scientific, and regulatory concern. PFAS are synthesized by two processes, direct fluorination (e.g., electrochemical fluorination) and oligomerization (e.g., fluorotelomerization). More than a megatonne of PFAS is produced yearly, and thousands of PFAS wind up in end-use products. Atmospheric and aqueous fugitive releases during manufacturing, use, and disposal have resulted in the global distribution of these compounds. Volatile PFAS facilitate long-range transport, commonly followed by complex transformation schemes to recalcitrant terminal PFAS, which do not degrade under environmental conditions and thus migrate through the environment and accumulate in biota through multiple pathways. Efforts to remediate PFAS-contaminated matrices still are in their infancy, with much current research targeting drinking water.
A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses. We prepared 132 specimens of two polymer-MWCNT composites containing the same grade of MWCNTs used in earlier OECD hazard assessments but without UV stabilizer. We report on a pilot inter-laboratory comparison (ILC) with four labs (two US and two EU) aging by UV and rain, then shipping for analysis. Two labs (one US and one EU) conducted the release sampling and analysis by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), UltravioleteVisible Spectroscopy (UVeVis), Analytical Ultracentrifugation (AUC), and Asymmetric Flow Field Flow Fractionation (AF4). We compare results between aging labs, between analysis labs and between materials. Surprisingly, we found quantitative agreement between analysis labs for TEM, ICP-MS, UVeVis; low variation between aging labs by all methods; and consistent rankings of release between TEM, ICP-MS, UVeVis, AUC. Significant disagreement was related primarily to differences in aging, but even these cases remained within a factor of two.
The industrial use and widespread application of carbon-based nanomaterials have caused a rapid increase in their production over the last decades. However, toxicity of these materials is not fully known and is still being investigated for potential human and ecological health risks. Detecting carbon-based nanomaterials in the environment using current analytical methods is problematic, making environmental fate and transport modeling a practical way to estimate environmental concentrations and assess potential ecological risks. The Water Quality Analysis Simulation Program 8 (WASP8) is a dynamic, spatially resolved fate and transport model for simulating exposure concentrations in surface waters and sediments. Recently, WASP has been updated to incorporate processes for simulating the fate and transport of nanomaterials including heteroaggregation and phototransformation. This study examines the fate and transport of multiwalled carbon nanotubes (MWCNT), graphene oxide (GO) and reduced graphene oxide (rGO) in four aquatic ecosystems in the southeastern United States. Sites include a seepage lake, a coastal plains river, a piedmont river and an unstratified, wetland lake. A hypothetical 50-year release is simulated for each site-nanomaterial pair to analyze nanomaterial distribution between the water column and sediments. For all nanomaterials, 99% of the mass loaded moves though systems of high and low residence times without being heteroaggregated and deposited in the sediments. However, significant accumulation in the sediments does occur over longer periods of time. Results show that GO and rGO had the highest mass fraction in the water column of all four sites. MWCNT were found predominantly in the sediments of the piedmont river and seepage lake but were almost entirely contained in the water column of the coastal plains river and wetland lake. Simulated recovery periods following the release estimate 37+ years for lakes and 1-4 years Disclaimer This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the USEPA. Appendix A. Supporting Information (SI)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.