Long-range and highly accurate de novo assembly from short-read data is one of the most pressing challenges in genomics. Recently, it has been shown that read pairs generated by proximity ligation of DNA in chromatin of living tissue can address this problem, dramatically increasing the scaffold contiguity of assemblies. Here, we describe a simpler approach (“Chicago”) based on in vitro reconstituted chromatin. We generated two Chicago data sets with human DNA and developed a statistical model and a new software pipeline (“HiRise”) that can identify poor quality joins and produce accurate, long-range sequence scaffolds. We used these to construct a highly accurate de novo assembly and scaffolding of a human genome with scaffold N50 of 20 Mbp. We also demonstrated the utility of Chicago for improving existing assemblies by reassembling and scaffolding the genome of the American alligator. With a single library and one lane of Illumina HiSeq sequencing, we increased the scaffold N50 of the American alligator from 508 kbp to 10 Mbp.
Sepsis is a common cause of death, but outcomes in individual patients are difficult to predict. Elucidating the molecular processes that differ between sepsis patients who survive and those who die may permit more appropriate treatments to be deployed. We examined the clinical features, and the plasma metabolome and proteome of patients with and without community-acquired sepsis, upon their arrival at hospital emergency departments and 24 hours later. The metabolomes and proteomes of patients at hospital admittance who would die differed markedly from those who would survive. The different profiles of proteins and metabolites clustered into fatty acid transport and β-oxidation, gluconeogenesis and the citric acid cycle. They differed consistently among several sets of patients, and diverged more as death approached. In contrast, the metabolomes and proteomes of surviving patients with mild sepsis did not differ from survivors with severe sepsis or septic shock. An algorithm derived from clinical features together with measurements of seven metabolites predicted patient survival. This algorithm may help to guide the treatment of individual patients with sepsis.
The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually-recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic/genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) and higher levels of SNVs than those reported for humans, plants, and P. infestans. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30% of the genome. LOH altered genotypes for more than 11,000 single nucleotide variant (SNV) sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.
BackgroundSepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality.MethodsThe Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis. Expressed sequence variants were identified followed by testing for association with sepsis outcomes.ResultsThe expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology.ConclusionsThe activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-survivors. The association of sepsis survival with a robust immune response and the presence of missense variants in VPS9D1 warrants replication and further functional studies.Trial registrationClinicalTrials.gov NCT00258869. Registered on 23 November 2005.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-014-0111-5) contains supplementary material, which is available to authorized users.
Background Blood-based methods using cell-free DNA (cfDNA) are under development as an alternative to existing screening tests. However, early-stage detection of cancer using tumor-derived cfDNA has proven challenging because of the small proportion of cfDNA derived from tumor tissue in early-stage disease. A machine learning approach to discover signatures in cfDNA, potentially reflective of both tumor and non-tumor contributions, may represent a promising direction for the early detection of cancer. Methods Whole-genome sequencing was performed on cfDNA extracted from plasma samples ( N = 546 colorectal cancer and 271 non-cancer controls). Reads aligning to protein-coding gene bodies were extracted, and read counts were normalized. cfDNA tumor fraction was estimated using IchorCNA. Machine learning models were trained using k-fold cross-validation and confounder-based cross-validations to assess generalization performance. Results In a colorectal cancer cohort heavily weighted towards early-stage cancer (80% stage I/II), we achieved a mean AUC of 0.92 (95% CI 0.91–0.93) with a mean sensitivity of 85% (95% CI 83–86%) at 85% specificity. Sensitivity generally increased with tumor stage and increasing tumor fraction. Stratification by age, sequencing batch, and institution demonstrated the impact of these confounders and provided a more accurate assessment of generalization performance. Conclusions A machine learning approach using cfDNA achieved high sensitivity and specificity in a large, predominantly early-stage, colorectal cancer cohort. The possibility of systematic technical and institution-specific biases warrants similar confounder analyses in other studies. Prospective validation of this machine learning method and evaluation of a multi-analyte approach are underway. Electronic supplementary material The online version of this article (10.1186/s12885-019-6003-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.