Build more capacity, and stretch what we already have
Wiecek: WAW Statistical Consulting. Athey acknowledges a generous gift from Schmidt Futures. Ahuja and Kremer acknowledge generous funding from the Wellspring Philanthropic Fund. Baker and Wiecek acknowledge generous funding from Emergent Ventures. Kominers acknowledges generous funding from the Washington Center for Equitable Growth. For contributing input and expertise, we are indebted to numerous experts in vaccine procurement from international organizations and governments. Whit
Due to the enormous economic, health, and social costs of the COVID-19 pandemic, there are high expected social returns to investing in parallel in multiple approaches to accelerating vaccination. We argue there are high expected social returns to investigating the scope for lowering the dosage of some COVID-19 vaccines. While existing evidence is not dispositive, available clinical data on the immunogenicity of lower doses combined with evidence of a high correlation between neutralizing antibody response and vaccine efficacy suggests that half or even quarter doses of some vaccines could generate high levels of protection, particularly against severe disease and death, while potentially expanding supply by 450 million to 1.55 billion doses per month, based on supply projections for 2021. An epidemiological model suggests that, even if fractional doses are less effective than standard doses, vaccinating more people faster could substantially reduce total infections and deaths. The costs of further testing alternative doses are much lower than the expected public health and economic benefits. However, commercial incentives to generate evidence on fractional dosing are weak, suggesting that testing may not occur without public investment. Governments could support either experimental or observational evaluations of fractional dosing, for either primary or booster shots. Discussions with researchers and government officials in multiple countries where vaccines are scarce suggests strong interest in these approaches.
and the Economy conference for helpful comments. This work was supported in part by the Wellspring Philanthropic Fund (Grant No: 15104) and Open Philanthropy. Więcek provides scientific consultancy for Certara, a drug development company and 1 Day Sooner, a COVID-19 human challenge trial advocacy group. Więcek reports no material conflicts of interest with regards to development of COVID-19 vaccines. Michael Kremer is the Faculty Director of the Development Innovation Lab (DIL) at the University of Chicago. Więcek is a Consulting Director at DIL. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
We argue that alternative COVID-19 vaccine dosing regimens could potentially dramatically accelerate global COVID-19 vaccination and reduce mortality, and that the costs of testing these regimens are dwarfed by their potential benefits. We first use the high correlation between neutralizing antibody response and efficacy against disease (Khoury et. al. 2021) to show that half or even quarter doses of some vaccines generate immune responses associated with high vaccine efficacy. We then use an SEIR model to estimate that under these efficacy levels, doubling or quadrupling the rate of vaccination by using fractional doses would dramatically reduce infections and mortality. Since the correlation between immune response and efficacy may not be fully predictive of efficacy with fractional doses, we then use the SEIR model to show that fractional dosing would substantially reduce infections and mortality over a wide range of plausible efficacy levels. Further immunogenicity studies for a range of vaccine and dose combinations could deliver outcomes in weeks and could be conducted with a few hundred healthy volunteers. National regulatory authorities could also decide to test efficacy of fractional dosing in the context of vaccination campaigns based on existing immune response data, as some did for delayed second doses. If efficacy turned out to be high, the approach could be implemented broadly, while if it turned out to be low, downside risk could be limited by administering full doses to those who had received fractional doses. The SEIR model also suggests that delaying second vaccine doses will likely have substantial mortality benefits for multiple, but not all, vaccine-variant combinations, underscoring the importance of ongoing surveillance. Finally, we find that for countries choosing between approved but lower efficacy vaccines available immediately and waiting for mRNA vaccines, using immediately available vaccines typically reduces mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.