International audienceIn this paper, one investigates the elastic flexural-torsional buckling of linearly tapered cantilever strip beam-columns acted by axial and transversal point loads applied at the tip. For prismatic and wedge-shaped members, the governing differential equation is integrated in closed form by means of confluent hypergeometric functions. For general tapered members (0 <(h(max)-h(min))/h(max)< 1), the solution to the boundary value problem is obtained in the form of a Frobenius' series, which is shown to converge in the interior of the domain and at the boundary if and only if 0 <(h(max)-h(min))/h(max)< 1/2. Therefore, for 1/2 <=(h(max)-h(min))/h(max)< 1 the Frobenius' series solution cannot be used to establish the characteristic equation for the cantilever beam-columns; the problem is then solved numerically by means of a collocation procedure. Some of the analytical solutions (buckling loads) were compared with the results of shell finite-element analyses and an excellent agreement was found in all cases, thus validating the mathematical model and confirming the correctness of the analytical results. The paper closes with a discussion on the convexity of the stability domain (in the load parameter space) and the accuracy of approximations based on Dunkerley-type theorems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.