As the complexity of automated driving systemss (ADSs) with automation levels above level 3 is rising, virtual testing for such systems is inevitable and necessary. The complexity of testing these levels lies in the modeling and calculation demands for the virtual environment, which consists of roads, traffic, static and dynamic objects, as well as the modeling of the car itself. An essential part of the safety and performance analysis of ADSs is the modeling and consideration of dynamic road traffic participants. There are multiple forms of traffic flow simulation software (TFSS), which are used to reproduce realistic traffic behavior and are integrated directly or over interfaces with vehicle simulation software environments. In this paper we focus on the TFSS from PTV Vissim in a co-simulation framework which combines Vissim and CarMaker. As it is a commonly used software in industry and research, it also provides complex driver models and interfaces to manipulate and develop customized traffic participants. Using the driver model DLL interface (DMDI) from Vissim it is possible to manipulate traffic participants or adjust driver models in a defined manner. Based on the DMDI, we extended the code and developed a framework for the manipulation and testing of ADSs in the traffic environment of Vissim. The efficiency and performance of the developed software framework are evaluated using the co-simulation framework for the testing of ADSs, which is based on Vissim and CarMaker.
The increasingly used approach of combining different simulation softwares in testing of automated driving systems (ADSs) increases the need for potential and convenient software designs. Recently developed co-simulation platforms (CSPs) provide the possibility to cover the high demand for testing kilometers for ADSs by combining vehicle simulation software (VSS) with traffic flow simulation software (TFSS) environments. The emphasis on the demand for testing kilometers is not enough to choose a suitable CSP. The complexity levels of the vehicle, object, sensors, and environment models used are essential for valid and representative simulation results. Choosing a suitable CSP raises the question of how the test procedures should be defined and constructed and what the relevant test scenarios are. Parameters of the ADS, environments, objects, and sensors in the VSS, as well as traffic parameters in the TFSS, can be used to define and generate test scenarios. In order to generate a large number of scenarios in a systematic and automated way, suitable and appropriate software designs are required. In this paper, we present a software design for a CSP based on the Model–View–Controller (MVC) design pattern as well as an implementation of a complex CSP for virtual testing of ADSs. Based on this design, an implementation of a CSP is presented using the VSS from IPG Automotive (CarMaker) and the TFSS from the PTV Group (Vissim). The results showed that the presented CSP design and the implementation of the co-simulation can be used to generate relevant scenarios for testing of ADSs.
Automated driving requires a reliable digital representation of the environment, which is achieved by various vehicle sensors. Wireless devices for communication between vehicles and infrastructure (Car2X communication) provide additional data beyond the vehicle's sensor range. In order to reduce the amount of on-road testing, there has been an increased use of numerical simulation in the development of automated driving functions, which demands accurate simulation models for the sensors involved. The present research deals with the development of Car2X sensor models for conceptual, automated driving investigations based on relatively simple yet computationally efficient mathematical models featuring parameters derived from on-road hardware testing. For analysis purposes, variations in range and reliability in different driving situations were measured and depicted in Google Earth. For the sensor model, a combination of geometric and stochastic models was chosen. The modeling is based on a link budget calculation that considers system and path losses, where wave propagation is described using Nakagami probability density functions. For intersections, an additional term is added to account for the path loss with geometric parameters of the intersection. After model parametrization, an evaluation was conducted. In addition, as a sample case, Car2X was added to an adaptive cruise control, and the improved functionality was demonstrated using vehicle dynamics simulation. This extended adaptive cruise control used information from the indicator of surrounding vehicles to react faster to lane changes by these vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.