Regulatory T cells promote cancer by suppressing anti-tumor immune responses. We found that anti-LAP antibody which targets the latency-associated peptide (LAP)/TGF-β complex on Tregs and other cells enhances anti-tumor immune responses and reduces tumor growth in models of melanoma, colorectal carcinoma and glioblastoma. Anti-LAP decreases LAP+ Tregs, tolerogenic dendritic cells and TGF-β secretion, and is associated with CD8+ T cell activation. Anti-LAP increases infiltration of tumors by cytotoxic CD8+ T cells and reduces CD103+ CD8 T cells in dLNs and spleen. We identified a role for CD103+ CD8 T cells in cancer. Tumor-associated CD103+ CD8 T cells have a tolerogenic phenotype with increased expression of CTLA-4 and IL-10 and decreased expression of IFN-γ, TNF-α, and granzymes. Adoptive transfer of CD103+ CD8 T cells promotes tumor growth whereas CD103 blockade limits tumorigenesis. Thus, anti-LAP targets multiple immunoregulatory pathways and represents a potential approach for cancer immunotherapy.
Jamali et al. 2-Photon Microscopy of Corneal cDCs in DED. Furthermore, apparent neuronal contact significantly alters cDC kinetics and morphological characteristics, suggesting that ocular surface nerves may play a direct role in mediating immune responses in DED.
Chronic inflammation can drive tumor development. Here, we have identified microRNA-146a (miR-146a) as a major negative regulator of colonic inflammation and associated tumorigenesis by modulating IL-17 responses. MiR-146a-deficient mice are susceptible to both colitis-associated and sporadic colorectal cancer (CRC), presenting with enhanced tumorigenic IL-17 signaling. Within myeloid cells, miR-146a targets RIPK2, a NOD2 signaling intermediate, to limit myeloid cell-derived IL-17-inducing cytokines and restrict colonic IL-17. Accordingly, myeloid-specific miR-146a deletion promotes CRC. Moreover, within intestinal epithelial cells (IECs), miR-146a targets TRAF6, an IL-17R signaling intermediate, to restrict IEC responsiveness to IL-17. MiR-146a within IECs further suppresses CRC by targeting PTGES2, a PGE2 synthesis enzyme. IEC-specific miR-146a deletion therefore promotes CRC. Importantly, preclinical administration of miR-146a mimic, or small molecule inhibition of the miR-146a targets, TRAF6 and RIPK2, ameliorates colonic inflammation and CRC. MiR-146a overexpression or miR-146a target inhibition represent therapeutic approaches that limit pathways converging on tumorigenic IL-17 signaling in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.