The mouse neurological mutant 'motor endplate disease' (med) is characterized by early onset progressive paralysis of the hind limbs, severe muscle atrophy, degeneration of Purkinje cells and juvenile lethality. We have isolated a voltage-gated sodium channel gene, Scn8a, from the flanking region of a transgene-induced allele of med. Scn8a is expressed in brain and spinal cord but not in skeletal muscle or heart, and encodes a predicted protein of 1,732 amino acids. An intragenic deletion at the transgene insertion site results in loss of expression. Scn8a is closely related to other sodium channel alpha subunits, with greatest similarity to a brain transcript from the pufferfish Fugu rubripes. The human homologue, SCN8A, maps to chromosome 12q13 and is a candidate gene for inherited neurodegenerative disease.
BACKGROUND & AIMS Zinc-fingers and homeoboxes 2 (ZHX2) represses transcription of several genes associated with liver cancer. However, little is known about the role of ZHX2 in development of hepatocellular carcinoma (HCC). We investigated the mechanisms by which ZHX2 might affect proliferation of HCC cells. METHODS We overexpressed and knocked down ZHX2 in HCC cells and analyzed the effects on proliferation, colony formation, and the cell cycle. We also analyzed the effects of ZHX2 overexpression in growth of HepG2.2.15 tumor xenografts in nude mice. Chromatin immunoprecipitation and luciferase reporter assays were used to measure binding of ZHX2 target promoters. Levels of ZHX2 in HCC samples were evaluated by immunohistochemistry. RESULTS ZHX2 overexpression significantly reduced proliferation of HCC cells and growth of tumor xenografts in mice; it led to G1 arrest and reduced levels of cyclins A and E in HCC cell lines. ZHX2 bound to promoter regions of CCNA2 (which encodes Cyclin A) and CCNE1 (which encodes cyclin E) and inhibited their transcription. Knockdown of cyclin A or cyclin E reduced the increased proliferation mediated by ZHX2 knockdown. Nuclear localization of ZHX2 was required for it to inhibit proliferation of HCC cells in culture and in mice. Nuclear localization of ZHX2 was reduced in human HCC samples, even in small tumors (diameter<5 cm), compared to adjacent non-tumor tissues. Moreover, reduced nuclear levels of ZHX2 correlated with reduced survival times of patients, high levels of tumor microvascularization, and hepatocyte proliferation. CONCLUSIONS ZHX2 inhibits HCC cell proliferation, by preventing expression of cyclins A and E, and reduces growth of xenograft tumors in mice. Loss of nuclear ZHX2 might be an early step in the development of HCC.
The ␣-fetoprotein (AFP) and H19 genes are transcribed at high levels in the mammalian fetal liver but are rapidly repressed postnatally. This repression in the liver is controlled, at least in part, by the Afr1 gene. Afr1 was defined >25 years ago when BALB͞cJ mice were found to have 5-to 20-fold higher adult serum AFP levels compared with all other mouse strains; subsequent studies showed that this elevation was due to higher Afp expression in the liver. H19, which has become a model for genomic imprinting, was identified initially in a screen for Afr1-regulated genes. The BALB͞cJ allele (Afr1 b ) is recessive to the wild-type allele (Afr1 a ), consistent with the idea that Afr1 functions as a repressor. By high-resolution mapping, we identified a gene that maps to the Afr1 interval on chromosome 15 and encodes a putative zinc fingers and homeoboxes (ZHX) protein. In BALB͞cJ mice, this gene contains a murine endogenous retrovirus within its first intron and produces predominantly an aberrant transcript that no longer encodes a functional protein. Liver-specific overexpression of a Zhx2 transgene restores wild-type H19 repression on a BALB͞cJ background, confirming that this gene is responsible for hereditary persistence of Afp and H19 in the livers of BALB͞cJ mice. Thus we have identified a genetically defined transcription factor that is involved in developmental gene silencing in mammals. We present a model to explain the liver-specific phenotype in BALB͞cJ mice, even though Afr1 is a ubiquitously expressed gene.development ͉ genetics ͉ positional cloning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.