The significance of radiotherapy (RT) -associated cardiac injury for stage III non-small-cell lung cancer (NSCLC) is unclear, but higher heart doses were associated with worse overall survival in the Radiation Therapy Oncology Group (RTOG) 0617 study. We assessed the impact of heart dose in patients treated at our institution on several prospective dose-escalation trials. Patients and MethodsFrom 1996 to 2009, 127 patients with stage III NSCLC (Eastern Cooperative Oncology Group performance status, 0 to 1) received dose-escalated RT to 70 to 90 Gy (median, 74 Gy) in six trials. RT plans and cardiac doses were reviewed. Records were reviewed for the primary end point: symptomatic cardiac events (symptomatic pericardial effusion, acute coronary syndrome, pericarditis, significant arrhythmia, and heart failure). Cardiac risk was assessed by noting baseline coronary artery disease and calculating the WHO/International Society of Hypertension score.Competing risks analysis was used. ResultsIn all, 112 patients were analyzed. Median follow-up for surviving patients was 8.8 years. Twenty-six patients (23%) had one or more events at a median of 26 months to first event (effusion [n = 7], myocardial infarction [n = 5], unstable angina [n = 3], pericarditis [n = 2], arrhythmia [n = 12], and heart failure [n = 1]). Heart doses (eg, heart mean dose; hazard ratio, 1.03/Gy; P = .002,), coronary artery disease (P , .001), and WHO/International Society of Hypertension score (P = .04) were associated with events on univariable analysis. Heart doses remained significant on multivariable analysis that accounted for baseline risk. Two-year competing risk-adjusted event rates for patients with heart mean dose , 10 Gy, 10 to 20 Gy, or $ 20 Gy were 4%, 7%, and 21%, respectively. Heart doses were not associated with overall survival. ConclusionCardiac events were relatively common after high-dose thoracic RT and were independently associated with both heart dose and baseline cardiac risk. RT-associated cardiac toxicity after treatment of stage III NSCLC may occur earlier than historically understood, and heart doses should be minimized.
Cardiac tubular-like membrane invaginations contain the membrane scaffolding protein BIN1, which tethers dynamic microtubules that deliver calcium channels directly to T-tubule membrane.
Gap junctions form electrical conduits between adjacent myocardial cells, permitting rapid spatial passage of the excitation current essential to each heartbeat. Arrhythmogenic decreases in gap junction coupling are a characteristic of stressed, failing, and aging myocardium, but the mechanisms of decreased coupling are poorly understood. We previously found that microtubules bearing gap junction hemichannels (connexons) can deliver their cargo directly to adherens junctions. The specificity of this delivery requires the microtubule plus-end tracking protein EB1. We performed this study to investigate the hypothesis that the oxidative stress that accompanies acute and chronic ischemic disease perturbs connexon forward trafficking. We found that EB1 was displaced in ischemic human hearts, stressed mouse hearts, and isolated cells subjected to oxidative stress. As a result, we observed limited microtubule interaction with adherens junctions at intercalated discs and reduced connexon delivery and gap junction coupling. A point mutation within the tubulin-binding domain of EB1 reproduced EB1 displacement and diminished connexon delivery, confirming that EB1 displacement can limit gap junction coupling. In zebrafish hearts, oxidative stress also reduced the membrane localization of connexin and slowed the spatial spread of excitation. We anticipate that protecting the microtubule-based forward delivery apparatus of connexons could improve cell-cell coupling and reduce ischemia-related cardiac arrhythmias.
Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of non-coding sequences highly enriched in human heart enhancers which is likely to facilitate down-stream studies of the role of enhancers in development and pathological conditions of the heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.