The pressure-dependent structural evolution of a neutral zinc-imidazolate framework [Zn(2)(C(3)H(3)N(2))(4)](n) (ZnIm) has been investigated. The as-synthesized three-dimensional ZnIm network (alpha-phase) crystallizes in the tetragonal space group I4(1)cd (a = 23.5028(4) A, c = 12.4607(3) A). The ZnIm crystal undergoes a phase transition to a previously unknown beta-phase within the 0.543(5)-0.847(5) GPa pressure range. The tetragonal crystal system is conserved during this transformation, and the beta-phase space group is I4(1) (a = 22.7482(3) A, c = 13.0168(3) A). The physical mechanism by which the transition occurs involves a complex cooperative bond rearrangement process. The room-temperature bulk modulus for ZnIm is estimated to be approximately 14 GPa. This study represents the first example of a high-pressure single-crystal X-ray diffraction analysis of a metal-organic framework.
The single-crystal X-ray structure of Ru(3)(CO)(12) is reported at 8 pressures ranging from 1 atm (0.0 GPa) to 8.14(5) GPa. Although intramolecular bonding parameters remain relatively constant, intramolecular and intermolecular nonbonding contact distances decrease by an average of 4% and 15%, respectively. At 8.14 GPa, O...O, C...O, and C...C intermolecular distances as short as 2.54(4), 2.64(6), and 3.07(4) A, respectively, are observed, and the unit cell compresses to 75% of the ambient pressure volume. Raman and infrared spectroscopic measurements show that carbonyl stretching frequencies shift to higher wavenumber values by as much as 80 cm(-)(1), even though Ru-C and C-O distances stay roughly constant throughout the entire pressure range studied. Compression of the sample to above 18 GPa with laser radiation results in an irreversible transformation due to either decomposition or a total collapse of D(3)(h) molecular geometry accompanied by color darkening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.