Objective To evaluate the association of subretinal hyper-reflective material (SHRM) with visual acuity (VA), geographic atrophy (GA) and scar in the Comparison of Age related Macular Degeneration Treatments Trials (CATT) Design Prospective cohort study within a randomized clinical trial. Participants The 1185 participants in CATT. Methods Participants were randomly assigned to ranibizumab or bevacizumab treatment monthly or as-needed. Masked readers graded scar and GA on fundus photography and fluorescein angiography images, SHRM on time domain (TD) and spectral domain (SD) optical coherence tomography (OCT) throughout 104 weeks. Measurements of SHRM height and width in the fovea, within the center 1mm2, or outside the center 1mm2 were obtained on SD-OCT images at 56 (n=76) and 104 (n=66) weeks. VA was measured by certified examiners. Main Outcome Measures SHRM presence, location and size, and associations with VA, scar, and GA. Results Among all CATT participants, the percentage with SHRM at enrollment was 77%, decreasing to 68% at 4 weeks after treatment and 54% at 104 weeks. At 104 weeks, scar was present more often in eyes with persistent SHRM than eyes with SHRM that resolved (64% vs. 31%; p<0.0001). Among eyes with detailed evaluation of SHRM at weeks 56 (n=76) and 104 (n=66), mean [SE] VA letter score was 73.5 [2.8], 73.1 [3.4], 65.3 [3.5], and 63.9 [3.7] when SHRM was absent, present outside the central 1mm2, present within the central 1mm2 but not the foveal center, or present at the foveal center (p=0.02). SHRM was present at the foveal center in 43 (30%), within the central 1mm2 in 21 (15%) and outside the central 1mm2 in 19 (13%). When SHRM was present, the median maximum height in microns under the fovea, within the central 1 mm2 including the fovea and anywhere within the scan was 86; 120; and 122, respectively. VA was decreased with greater SHRM height and width (p<0.05). Conclusions SHRM is common in eyes with NVAMD and often persists after anti-VEGF treatment. At 2 years, eyes with scar were more likely to have SHRM than other eyes. Greater SHRM height and width were associated with worse VA. SHRM is an important morphological biomarker in eyes with NVAMD.
IntroductionIn patients with Alzheimer's disease (AD) and mild cognitive impairment, structural changes in the retina (i.e., reduced thicknesses of the ganglion cell and retinal nerve fiber layers and inclusion bodies that appear to contain beta-amyloid protein [Ab]) have been previously reported. We sought to explore whether anatomic retinal changes are detectable in the preclinical stage of AD.MethodsA cross-sectional study (as part of an ongoing longitudinal cohort study) involving 63 cognitively normal adults, all of whom have a parent with AD and subjective memory complaints. We compared neocortical amyloid aggregation (florbetapir PET imaging) to retinal spectral domain optical coherence tomography (SD-OCT) markers of possible disease burden. Retinal biomarkers, including the number and surface area of retinal inclusion bodies and the thickness of retinal neuronal layers, were compared across groups with high vs. low neocortical beta-amyloid load.ResultsThe surface area of inclusion bodies increased as a function of cortical amyloid burden. Additionally, there was a trend toward a selective volume increase in the inner plexiform layer (IPL; a layer rich in cholinergic activity) of the retina in Aβ+ relative to Aβ− participants, and IPL volume was correlated with the surface area of retinal inclusion bodies.DiscussionThese initial results suggest that retinal imaging may be a potential cost-effective and noninvasive technique that can be used to identify those at-risk for AD. Layer-specific changes in the IPL and their association with surface area of inclusion bodies are discussed as a possible reflection of early inflammatory processes associated with cholinergic disruption and concurrent Ab accumulation in the neocortex.
In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
PURPOSE. To analyze the clinical presentation and optical coherence tomography (OCT) findings in indirect traumatic optic neuropathy (ITON) in veterans with chronic mild traumatic brain injury (mTBI). METHODS. This retrospective study is the first to describe the OCT pattern of subclinical to mild ITON in veterans with chronic mTBI. The thicknesses of the macular ganglion cell layer (mGCL), peripapillary retinal nerve fiber layer (pRNFL), and subfoveal choroidal layer were analyzed in young veterans who had mTBI of >6 months' duration and either blunt head injury or improvised explosive device (IED) concussions. RESULTS. Three major OCT findings were demonstrated: (1) temporal pRNFL thinning was associated with subclinical TON in the eyes of chronic mTBI patients compared with controls; within mTBI subjects, nasal mGCL thinning at the 3-mm modified Early Treatment Diabetic Retinopathy Study circle diameter distance from the fovea correlated with the corresponding temporal retinal nerve fiber layer thinning; (2) inner (1 mm) superior thinning was greater than that of the temporal mGCL in blunt head injury and could potentially distinguish it from IED concussive head trauma; and (3) subfoveal choroidal thinning was significantly worse in eyes of mTBI patients compared with those of controls. CONCLUSIONS. These OCT findings may contribute to the understanding of the spectrum of visual injuries resulting from head trauma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.