Unlike most tumor suppressor genes, the most common genetic alterations in tumor protein p53 (TP53) are missense mutations. Mutant p53 protein is often abundantly expressed in cancers and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53 wild-type and null cell lines. We found that loss or dominant-negative inhibition of wild-type p53 function reliably enhanced cellular fitness. By integrating these data with the Catalog of Somatic Mutations in Cancer (COSMIC) mutational signatures database, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.
In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations based on their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells, and predicting assay outcomes using machine learning, among many others. Here we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, golgi apparatus, plasma membrane, endoplasmic reticulum, and mitochondria. The original protocol was updated in 2016 based on several years' experience running it at two sites, after optimizing it by visual stain quality. Here we describe the work of the Joint Undertaking for Morphological Profiling (JUMP) Cell Painting Consortium, aiming to improve upon the assay via quantitative optimization, based on the measured ability of the assay to detect morphological phenotypes and group similar perturbations together. We find that the assay gives very robust outputs despite a variety of changes to the protocol and that two vendors' dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1 to 2 weeks for a typically sized batch of 20 or fewer plates; feature extraction and data analysis take an additional 1 to 2 weeks.
Image-based profiling has emerged as a powerful technology for various steps in basic biological and pharmaceutical discovery, but the community has lacked a large, public reference set of data from chemical and genetic perturbations. Here we present data generated by the Joint Undertaking for Morphological Profiling (JUMP)-Cell Painting Consortium, a collaboration between 10 pharmaceutical companies, six supporting technology companies, and two non-profit partners. When completed, the dataset will contain images and profiles from the Cell Painting assay for over 116,750 unique compounds, over-expression of 12,602 genes, and knockout of 7,975 genes using CRISPR-Cas9, all in human osteosarcoma cells (U2OS). The dataset is estimated to be 115 TB in size and capturing 1.6 billion cells and their single-cell profiles. File quality control and upload is underway and will be completed over the coming months at the Cell Painting Gallery: https://registry.opendata.aws/cellpainting-gallery. A portal to visualize a subset of the data is available at https://phenaid.ardigen.com/jumpcpexplorer/.
We present a new, carefully designed and well-annotated dataset of images and image-based profiles of cells that have been treated with chemical compounds and genetic perturbations. Each gene that is perturbed is a known target of at least two compounds in the dataset. The dataset can thus serve as a benchmark to evaluate methods for predicting similarities between compounds and between genes and compounds, measuring the effect size of a perturbation, and more generally, learning effective representations for measuring cellular state from microscopy images. Advancements in these applications can accelerate the development of new medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.