Transplant-associated thrombotic microangiopathy (TA-TMA) is a common and poorly recognized complication of hematopoietic stem cell transplantation (HSCT) associated with excessive complement activation, likely triggered by endothelial injury. An important missing piece is the link between endothelial injury and complement activation. We hypothesized that neutrophil extracellular traps (NETs) mechanistically link endothelial damage with complement activation and subsequent TA-TMA. Neutrophil activation releases granule proteins together with double-stranded DNA (dsDNA) to form extracellular fibers known as NETs. NETs have been shown to activate complement and can be assessed in humans by quantification of dsDNA in serum. We measured levels of dsDNA, as a surrogate for NETs in 103 consecutive pediatric allogeneic transplant recipients at day 0, +14, +30, +60, and +100. A spike in dsDNA production around day +14 during engraftment was associated with subsequent TA-TMA development. Peak dsDNA production around day +14 was associated with interleukin-8-driven neutrophil recovery. Increased dsDNA levels at days +30, +60, and +100 were also associated with increased mortality and gastrointestinal graft-versus-host disease (GVHD). NETs may serve as a mechanistic link between endothelial injury and complement activation. NET formation may be one mechanism contributing to the clinical overlap between GVHD and TA-TMA.
Human studies have shown loss of diversity of the gut microbiome following hematopoietic stem cell transplantation (HSCT) in association with significant gut injury caused by the preparative regimen. Prolonged antibiotic use worsens loss of microbiome diversity and increases risk of complications such as graft-versus-host disease (GVHD). Our data support the hypothesis that loss of intestinal commensals that produce short-chain fatty acids (SCFAs) may increase dysbiosis. Here, we report an extensive longitudinal examination of changes in the luminal SCFAs in children undergoing allogeneic HSCT, and the relationship of those changes to the microbiota and antibiotic exposure. We found significant and progressive alterations in butyrate, and in additional SCFAs in stool in the first 14 days after transplant, a finding not observed in published mouse studies. SCFA levels were lower in children receiving antibiotics with activity against anaerobic organisms. Moreover, day 14 post-HSCT butyrate and propionate levels are lower in children who went on to develop GVHD, although our disease population was small. These data provide insight into the mechanism of prior observations that loss of diversity and increased antibiotic use are associated with GVHD following HSCT. Our findings offer potential modifiable targets to reduce risk of GVHD and improve survival after HSCT.
Background Motile cilia in the ‘organ of asymmetry’ create directional fluid flows that are vital for left-right (LR) asymmetric patterning of vertebrate embryos. Organ function often depends on tightly regulated organ size control, but the role of organ of asymmetry size in LR patterning has remained unknown. Observations of the organ of asymmetry in the zebrafish —called Kupffer’s vesicle (KV)—have suggested significant variations in KV size in wild-type embryos, raising questions about the impact of KV organ size on LR patterning. Results To understand the relationship between organ of asymmetry size and its function, we characterized variations in KV at several developmental stages and in several different zebrafish strains. We found that the number of KV cilia and the size of the KV lumen were highly variable, whereas the length of KV cilia showed less variation. These variabilities were similar among different genetic backgrounds. By specifically modulating KV size and analyzing individual embryos, we identified a size threshold that is necessary for KV function. Conclusions Together these results indicate the KV organ of asymmetry size is not tightly controlled during development, but rather must only exceed a threshold to direct robust LR patterning of the zebrafish embryo.
Background BK polyomavirus (BKPyV) is associated with symptomatic hemorrhagic cystitis after hematopoietic cell transplantation (HCT). Little is known about the host immune response, effectiveness of antiviral treatment, or impact of asymptomatic replication on long-term kidney function. Methods In children and young adults undergoing allogeneic HCT, we quantified BKPyV viruria and viremia (pre-HCT and at Months 1–4, 8, 12, and 24 post-HCT) and tested associations of peak viremia ≥10 000 or viruria ≥109 copies/mL with estimated kidney function (glomerular filtration rate, eGFR) and overall survival at 2 years posttransplant. We examined the factors associated with viral clearance by Month 4, including BKPyV-specific T cells by enzyme-linked immune absorbent spot at Month 3 and cidofovir use. Results We prospectively enrolled 193 participants (median age 10 years) and found that 18% had viremia ≥10 000 copies/mL and 45% had viruria ≥109 copies/mL in the first 3 months post-HCT. Among the 147 participants without cystitis (asymptomatic), 58 (40%) had any viremia. In the entire cohort and asymptomatic subset, having viremia ≥10 000 copies/mL was associated with a lower creatinine/cystatin C eGFR at 2 years post-HCT. Viremia ≥10 000 copies/mL was associated with a higher risk of death (adjusted hazard ratio, 2.2; 95% confidence interval, 1.1–4.2). Clearing viremia was associated with detectable BKPyV-specific T cells and having viremia <10 000 copies/mL, but not cidofovir exposure. Conclusions Screening for BKPyV viremia after HCT identifies asymptomatic patients at risk for kidney disease and reduced survival. These data suggest potential changes to clinical practice, including prospective monitoring for BKPyV viremia to test virus-specific T cells to prevent or treat BKPyV replication.
Acute kidney injury (AKI) is a common complication in pediatric hematopoietic stem cell transplantation (HSCT). Serum creatinine is an imprecise biomarker of AKI. We hypothesized that combining creatinine with serum cystatin C (cysC) and urinary neutrophil gelatinase-associated lipocalin (NGAL) more effectively characterizes AKI during the first 28 days of HSCT and better identifies patients at risk of adverse outcomes than creatinine alone. We prospectively assessed the type and severity of AKI in 80 consecutive allogeneic HSCT patients using weekly creatinine, cysC, and NGAL. We combined the biomarkers to define 7 Composite Types of AKI, including All Positive AKI (simultaneously detected creatinine, cysC, and NGAL AKI). Outcomes included renal replacement therapy and transplant-related mortality. In all, 75% of patients had AKI by at least one measure; 33% developed >1 type of AKI. Mild AKI often preceded Severe AKI. Patients with creatinine or NGAL AKI that were Severe or Repeated tended to have worse outcomes. The five patients with All Positive AKI had the highest rates of morbidity and mortality. AKI evaluation with creatinine, cysC, and NGAL provides a comprehensive profile of early AKI and narrowly identifies patients at highest risk of adverse outcomes, providing opportunities for early, impactful intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.