Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphite to over 350 mAh/g, competitive with anode capacity in commercial lithium-ion batteries and the highest reported anode capacity so far for potassium ion batteries. Control studies distinguish the importance of nitrogen dopant sites as opposed to sp3 carbon defect sites to achieve the improved performance, which also enables > 6X increase in rate performance of doped versus undoped materials. Finally, in-situ Raman spectroscopy studies elucidate the staging sequence for doped and undoped materials and demonstrate the mechanism of the observed capacity enhancement to be correlated with distributed storage at local nitrogen sites in a staged KC8 compound. This study demonstrates a pathway to overcome the limitations of graphitic carbons for anodes in potassium ion batteries by atomically precise engineering of nanomaterials.
This report describes methods to produce large-area films of graphene oxide from aqueous suspensions using electrophoretic deposition. By selecting the appropriate suspension pH and deposition voltage, films of the negatively charged graphene oxide sheets can be produced with either a smooth "rug" microstructure on the anode or a porous "brick" microstructure on the cathode. Cathodic deposition occurs in the low pH suspension with the application of a relatively high voltage, which facilitates a gradual change in the colloids' charge from negative to positive as they adsorb protons released by the electrolysis of water. The shift in the colloids' charge also gives rise to the brick microstructure, as the concurrent decrease in electrostatic repulsion between graphene oxide sheets results in the formation of multilayered aggregates (the "bricks"). Measurements of water contact angle revealed the brick films (79°) to be more hydrophobic than the rug films (41°), a difference we attribute primarily to the distinct microstructures. Finally, we describe a sacrificial layer technique to make these graphene oxide films free-standing, which would enable them to be placed on arbitrary substrates.
We report a new surface-initiated polymerization strategy that yields superhydrophobic polymethylene (PM) films from initially smooth substrates of gold and silicon. The films are prepared by assembling a vinyl-terminated self-assembled monolayer, followed by exposure of the surface to a 0.1 M solution of borane, and polymerizing from the borane sites upon exposure to a solution of diazomethane at -17 degrees C. Surface-initiated polymethylenation (SIPM) presents rapid growth in relation to other surface-initiated reactions, producing PM films thicker than 500 nm after 2 min of reaction and 3 microm after 24 h of reaction. AFM and SEM images show the presence of micro- and nanoscale features that enable the entrapment of air when exposed to water. Consistent with this result, these films exhibit advancing water contact angles greater than 160 degrees, dramatically different than 103 degrees measured for smooth PM films, and hysteresis values ranging from 2 degrees to 40 degrees, depending on the substrate and polymerization time. The superhydrophobic character of the films results in the entrapment of air at the polymer/solution interface to provide remarkable resistances greater than 10(10) Omega x cm(2) against the transport of aqueous redox probes and cause the film to behave as a "perfect" capacitor.
X-ray absorption spectroscopy (XAS) is used to study band edge electronic structure of high-transition metal (TM) and trivalent lanthanide rare earth (RE) oxide gate dielectrics. The lowest conduction band d-states in TiO 2 , ZrO 2 and HfO 2 are correlated with: 1) features in the O K 1 edge, and 2) transitions from occupied Ti 2p, Zr 3p and Hf 4p states to empty Ti 3d-, Zr 4d-, and Hf 5d-states, respectively. The relative energies of d-state features indicate that the respective optical bandgaps, E opt (or equivalently, E g), and conduction band offset energy with respect to Si, E B , scale monotonically with the d-state energies of the TM/RE atoms. The multiplicity of d-state features in the Ti L 2 3 spectrum of TiO 2 , and in the derivative of the O K 1 spectra for ZrO 2 and HfO 2 indicate a removal of d-state degeneracies that results from a static Jahn-Teller effect in these nanocrystalline thin film oxides. Similar removals of d-state degeneracies are demonstrated for complex TM/RE oxides including Zr and Hf titanates, and La, Gd and Dy scandates. Analysis of XAS and band edge spectra indicate an additional band edge state that is assigned Jahn-Teller distortions at internal grain boundaries. These band edges defect states are electronically active in photoconductivity (PC), internal photoemission (IPE), and act as bulk traps in metal oxide semiconductor (MOS) devices, contributing to asymmetries in tunneling and Frenkel-Poole transport that have important consequences for performance and reliability in advanced Si devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.