Despite the rhizotoxicity of aluminum (Al) being identified over 100 years ago, there is still no consensus regarding the mechanisms whereby root elongation rate is initially reduced in the approximately 40% of arable soils worldwide that are acidic. We used high-resolution kinematic analyses, molecular biology, rheology, and advanced imaging techniques to examine soybean (Glycine max) roots exposed to Al. Using this multidisciplinary approach, we have conclusively shown that the primary lesion of Al is apoplastic. In particular, it was found that 75 µm Al reduced root growth after only 5 min (or 30 min at 30 µm Al), with Al being toxic by binding to the walls of outer cells, which directly inhibited their loosening in the elongation zone. An alteration in the biosynthesis and distribution of ethylene and auxin was a second, slower effect, causing both a transient decrease in the rate of cell elongation after 1.5 h but also a longer term gradual reduction in the length of the elongation zone. These findings show the importance of focusing on traits related to cell wall composition as well as mechanisms involved in wall loosening to overcome the deleterious effects of soluble Al.
The increasing use of zinc oxide nanoparticles (ZnO-NPs) in various commercial products is prompting detailed investigation regarding the fate of these materials in the environment. There is, however, a lack of information comparing the transformation of ZnO-NPs with soluble Zn(2+) in both soils and plants. Synchrotron-based techniques were used to examine the uptake and transformation of Zn in various tissues of cowpea ( Vigna unguiculata (L.) Walp.) exposed to ZnO-NPs or ZnCl2 following growth in either solution or soil culture. In solution culture, soluble Zn (ZnCl2) was more toxic than the ZnO-NPs, although there was substantial accumulation of ZnO-NPs on the root surface. When grown in soil, however, there was no significant difference in plant growth and accumulation or speciation of Zn between soluble Zn and ZnO-NP treatments, indicating that the added ZnO-NPs underwent rapid dissolution following their entry into the soil. This was confirmed by an incubation experiment with two soils, in which ZnO-NPs could not be detected after incubation for 1 h. The speciation of Zn was similar in shoot tissues for both soluble Zn and ZnO-NPs treatments and no upward translocation of ZnO-NPs from roots to shoots was observed in either solution or soil culture. Under the current experimental conditions, the similarity in uptake and toxicity of Zn from ZnO-NPs and soluble Zn in soils indicates that the ZnO-NPs used in this study did not constitute nanospecific risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.