In many information extraction applications, entity linking (EL) has emerged as a crucial task that allows leveraging information about named entities from a knowledge base. In this paper, we address the task of multimodal entity linking (MEL), an emerging research field in which textual and visual information is used to map an ambiguous mention to an entity in a knowledge base (KB). First, we propose a method for building a fully annotated Twitter dataset for MEL, where entities are defined in a Twitter KB. Then, we propose a model for jointly learning a representation of both mentions and entities from their textual and visual contexts. We demonstrate the effectiveness of the proposed model by evaluating it on the proposed dataset and highlight the importance of leveraging visual information when it is available.
The correct identification of the link between an entity mention in a text and a known entity in a large knowledge base is important in information retrieval or information extraction. The general approach for this task is to generate, for a given mention, a set of candidate entities from the base and, in a second step, determine which is the best one. This paper proposes a novel method for the second step which is based on the joint learning of embeddings for the words in the text and the entities in the knowledge base. By learning these embeddings in the same space we arrive at a more conceptually grounded model that can be used for candidate selection based on the surrounding context. The relative improvement of this approach is experimentally validated on a recent benchmark corpus from the TAC-EDL 2015 evaluation campaign.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.