An attenuated form of familial adenomatous polyposis coli, AAPC, causes relatively few colonic polyps, but still carries a significant risk of colon cancer. The mutant alleles responsible for this attenuated phenotype have been mapped in several families to the adenomatous polyposis coli (APC) locus on human chromosome 5q. Four distinct mutations in the APC gene have now been identified in seven AAPC families. These mutations that predict truncation products, either by single base pair changes or frameshifts, are similar to mutations identified in families with classical APC. However, they differ in that the four mutated sites are located very close to one another and nearer the 5' end of the APC gene than any base substitutions or small deletions yet discovered in patients with classical APC.
The autosomal recessive disorder primary congenital glaucoma (PCG) is caused by unknown developmental defect(s) of the trabecular meshwork and anterior chamber angle of the eye. Homozygosity mapping with a DNA pooling strategy in three large consanguineous Saudi PCG families identified the GLC3A locus on chromosome 2p21 in a region tightly linked to PCG in another population. Formal linkage analysis in 25 Saudi PCG families confirmed both significant linkage to polymorphic markers in this region and incomplete penetrance, but it showed no evidence of genetic heterogeneity. For these 25 families, the maximum combined two-point LOD score was 15.76 at a recombination fraction of .021, with the polymorphic marker D2S177. Both haplotype analysis and homozygosity mapping in these families localized GLC3A to a 5-cM critical interval delineated by markers D2S2186 and D2S1356. Sequence analysis of the coding exons for cytochrome P4501B1 (CYP1B1) in these 25 families revealed three distinctive mutations that segregate with the phenotype in 24 families. Additional clinical and molecular data on some mildly affected relatives showed variable expressivity of PCG in this population. These results should stimulate a study of the genetic and environmental events that modify the effects of CYP1B1 mutations in ocular development. Furthermore, the small number of PCG mutations identified in this Saudi population makes both neonatal and population screening attractive public health measures.
Febrile seizures are the most common form of childhood seizures, occurring in 2% to 5% of North American children. We report a large Utah family with 21 members affected by febrile seizures inherited as an autosomal dominant trait. All had generalized tonic–clonic seizures with onset associated with fever, consistent with the consensus febrile seizure phenotype, and none had febrile seizures beyond 6 years of age. Eighteen affected individuals had recurrent febrile seizures. Eight individuals developed afebrile seizures between ages 5 and 13 years. Afebrile seizures consisted of generalized tonic–clonic, generalized tonic, generalized atonic, simple partial, and partial complex seizure types and were associated with abnormal electroencephalographic findings in 5 individuals, all of whom were intellectually normal. We undertook linkage analysis in this family, defining the disease phenotype as febrile seizures alone. Linkage analysis in epilepsy candidate gene/loci regions failed to show evidence for linkage to febrile seizures. However, a genomewide scan and subsequent fine mapping revealed significant evidence for a new febrile seizure locus (FEB3) on chromosome 2q23‐24 with linkage to the marker D2S2330 (LOD score 8.08 at θ = 0.001). Haplotype analysis defined a critical 10‐cM region between markers D2S141 and D2S2345 that contains the FEB3 locus.
Ossification of the posterior longitudinal ligament of the spine (OPLL) is recognized as a common disorder among Japanese and throughout Asia. Estimates of its prevalence are in the range of 1. 9%-4.3%. Although its etiology is thought to involve a multiplicity of factors, epidemiological and family studies strongly implicate genetic susceptibility in the pathogenesis of OPLL. In this study we report an identification of a predisposing locus for OPLL, on chromosome 6p, close to the HLA complex. The evidence for this localization is provided by a genetic-linkage study of 91 affected sib pairs from 53 Japanese families. In this sib-pair study, D6S276, a marker lying close to the HLA complex, gives evidence for strongly significant linkage (P = .000006) to the OPLL locus. A candidate gene in the region, that for collagen 11A2, was analyzed for the presence of molecular variants in affected probands. Of 19 distinct variants identified, 4 showed strong statistical associations with OPLL (highest P = .0004). These observations of linkage and association, taken together, show that a genetic locus for OPLL lies close to the HLA region, on chromosome 6p.
Bardet-Biedl syndrome (BBS) is an uncommon autosomal recessive condition characterized by mental retardation, post-axial polydactylia, obesity and pigmentary retinopathy. We performed linkage analysis in 31 multiplex BBS families and report significant linkage with two markers on chromosome 11q, PYGM and AFM164zf12 (D11S913). Homogeneity testing demonstrates genetic heterogeneity within our set of families. Our data imply that a major gene, BBS1, is located on chromosome 11q, although mutations at other loci may also be associated with this phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.