Sensory receptive fields are large enough that they can contain more than one perceptible stimulus. How, then, can the brain encode information about each of the stimuli that may be present at a given moment? We recently showed that when more than one stimulus is present, single neurons can fluctuate between coding one vs. the other(s) across some time period, suggesting a form of neural multiplexing of different stimuli (Caruso et al., 2018). Here, we investigate (a) whether such coding fluctuations occur in early visual cortical areas; (b) how coding fluctuations are coordinated across the neural population; and (c) how coordinated coding fluctuations depend on the parsing of stimuli into separate vs. fused objects. We found coding fluctuations do occur in macaque V1 but only when the two stimuli form separate objects. Such separate objects evoked a novel pattern of V1 spike count (‘noise’) correlations involving distinct distributions of positive and negative values. This bimodal correlation pattern was most pronounced among pairs of neurons showing the strongest evidence for coding fluctuations or multiplexing. Whether a given pair of neurons exhibited positive or negative correlations depended on whether the two neurons both responded better to the same object or had different object preferences. Distinct distributions of spike count correlations based on stimulus preferences were also seen in V4 for separate objects but not when two stimuli fused to form one object. These findings suggest multiple objects evoke different response dynamics than those evoked by single stimuli, lending support to the multiplexing hypothesis and suggesting a means by which information about multiple objects can be preserved despite the apparent coarseness of sensory coding.
PURPOSE Estrogen receptor (ER)–positive endometrial cancers (ECs) are characterized by phosphatidylinositol 3-kinase (PI3K) and receptor tyrosine kinase (RTK)/RAS/β-catenin (CTNNB1) pathway alterations in approximately 90% and 80% of cases, respectively. Extensive cross-talk between ER, PI3K, and RTK/RAS/CTNNB1 pathways leads to both ligand-dependent and ligand-independent ER transcriptional activity as well as upregulation of cyclin D1 which, in complex with cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), is a critical regulator of cell cycle progression and a key mediator of resistance to hormonal therapy. We hypothesized that the combination of the aromatase inhibitor letrozole and CDK4/6 inhibitor abemaciclib would demonstrate promising activity in this setting. METHODS We conducted a phase II, two-stage study of letrozole/abemaciclib in recurrent ER-positive EC. Eligibility criteria included measurable disease, no limit on prior therapies, and all EC histologies; prior hormonal therapy was allowed. Primary end points were objective response rate by RECIST 1.1 and progression-free survival (PFS) rate at 6 months. RESULTS At the data cutoff date (December 03, 2021), 30 patients (28 with endometrioid EC) initiated protocol therapy; 15 (50%) patients had prior hormonal therapy. There were nine total responses (eight confirmed), for an objective response rate of 30% (95% CI, 14.7 to 49.4), all in endometrioid adenocarcinomas. Median PFS was 9.1 months, PFS at 6 months was 55.6% (95% CI, 35.1 to 72), and median duration of response was 7.4 months. Most common ≥ grade 3 treatment-related adverse events were neutropenia (20%) and anemia (17%). Responses were observed regardless of grade, prior hormonal therapy, mismatch repair, and progesterone receptor status. Exploratory tumor profiling revealed several mechanistically relevant candidate predictors of response ( CTNNB1, KRAS, and CDKN2A mutations) or absence of response ( TP53 mutations), which require independent validation. CONCLUSION Letrozole/abemaciclib demonstrated encouraging and durable evidence of activity in recurrent ER positive endometrioid EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.