A critical problem in the treatment of malignant gliomas is the extensive infiltration of individual tumor cells into adjacent brain tissues. This invasive phenotype severely limits all current therapies, and to date, no treatment is available to control the spread of this disease. Members of the tumor necrosis factor (TNF) ligand superfamily and their cognate receptors regulate various cellular responses including proliferation, migration, differentiation, and apoptosis. Specifically, the TNFRSF19/TROY gene encodes a type I cell surface receptor that is expressed on migrating or proliferating progenitor cells of the hippocampus, thalamus, and cerebral cortex. Here, we demonstrate that levels of TROY mRNA expression directly correlate with increasing glial tumor grade. Among malignant gliomas, TROY expression correlates inversely with overall patient survival. In addition, we demonstrate that TROY overexpression in glioma cells activates Rac1 signaling in a Pyk2-dependent manner to drive glioma cell invasion and migration. Pyk2 co-immunoprecipitates with the TROY receptor, and depletion of Pyk2 expression by short hairpin RNA interference oligonucleotides inhibits TROY-induced Rac1 activation and subsequent cellular migration. These findings position aberrant expression and/or signaling by TROY as a contributor, and possibly as a driver, of the malignant dispersion of glioma cells.
FK506 binding protein 5 (FKBP5) belongs to a family of immunophilins named for their ability to bind immunosuppressive drugs, also known as peptidyl-prolyl cis-trans isomerases, and also with chaperones to help protein folding. Using glioma cDNA microarray analysis, we found that FKBP5 was overexpressed in glioma tumors. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. The roles of FKBP5 in glioma cells were then examined. We found that cell growth was suppressed after FKBP5 expression was inhibited by short interfering RNA transfection and enhanced by FKBP5 overexpression. Electrophoretic mobility shift assay showed that nuclear factor-kappa B (NF-kappaB) and DNA binding was enhanced by FKBP5 overexpression. The expression level of I-kappa B alpha and phosphorylated NF-kappaB was regulated by the expression of FKBP5. These data suggest that FKBP5 is involved in NF-kappaB pathway activation in glioma cells. In addition, FKBP5 overexpression in rapamycin-sensitive U87 cells blocked the cells' response to rapamycin treatment, whereas rapamycin-resistant glioma cells, both PTEN-positive and -negative, were synergistically sensitive to rapamycin after FKBP5 was knocked down, suggesting that the FKBP5 regulates glioma cell response to rapamycin treatment. In conclusion, our study demonstrates that FKBP5 plays an important role in glioma growth and chemoresistance through regulating signal transduction of the NF-kappaB pathway.
The invasive nature of malignant gliomas is a clinical problem rendering tumors incurable by conventional treatment modalities such as surgery, ionizing radiation, and temozolomide. Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1) is a multifunctional adaptor protein, recruiting cytoplasmic signaling proteins and membrane receptors/transporters into functional complexes. This study revealed that NHERF-1 expression is increased in highly invasive cells that reside in the rim of glioblastoma multiforme (GBM) tumors and that NHERF-1 sustains glioma migration and invasion. Gene expression profiles were evaluated from laser capture-microdissected human GBM cells isolated from patient tumor cores and corresponding invaded white matter regions. The role of NHERF-1 in the migration and dispersion of GBM cell lines was examined by reducing its expression with small-interfering RNA followed by radial migration, three-dimensional collagen dispersion, immunofluorescence, and survival assays. The in situ expression of NHERF-1 protein was restricted to glioma cells and the vascular endothelium, with minimal to no detection in adjacent normal brain tissue. Depletion of NHERF-1 arrested migration and dispersion of glioma cell lines and caused an increase in cell-cell cohesiveness. Glioblastoma multiforme cells with depleted NHERF-1 evidenced a marked decrease in stress fibers, a larger cell size, and a more rounded shape with fewer cellular processes. When NHERF-1 expression was reduced, glioma cells became sensitized to temozolomide treatment resulting in increased apoptosis. Taken together, these results provide the first evidence for NHERF-1 as a participant in the highly invasive phenotype of malignant gliomas and implicate NHERF-1 as a possible therapeutic target for treatment of GBM.
Germline mutations in the human breast cancer susceptibility genes BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancer. In spite of the large number of sequence variants identified in BRCA1 and BRCA2 mutation analyses, many of these genetic alterations are still classified as variants of unknown significance (VUS). In this study, we evaluated 12 BRCA1/2 intronic variants in order to differentiate their pathogenic or polymorphic effects on the mRNA splicing process. We detected the existence of aberrant splicing in three BRCA1 variants (c.301-2delA/IVS6-2delA, c.441+1G>A/IVS7+1G>A, and c.4986+6T>G/IVS16+6T>G) and two BRCA2 variants (c.8487+1G>A/IVS19+1G>A and c.8632-2A>G/IVS20-2A>G). All but one of the aberrant transcripts arise from mutations affecting the conserved splice acceptor or donor sequences and all would be predicted to result in expression of truncated BRCA1 or BRCA2 proteins. However, we demonstrated that four of these splice-site mutations (i.e., c.301-2delA, c.441+1G>A, c.4986+6T>G, and c.8632-2A>G) with premature termination codons were highly unstable and were unlikely to encode for abundant expression of a mutant protein. Three variants of BRCA1 (c.212+3A>G/IVS5+3A>G, c.593+8A>G/IVS9+8A>G, and c.4986-20A>G/IVS16-20A>G) and four variants of BRCA2 (c.516-19C>T/IVS6-19C>T, c.7976-4_7976_3delTT/IVS17-4delTT, c.8487+19A>G/IVS19+19A>G, and c.9256- 18C>A/IVS24- 18C>A) in our studies show no effects on the normal splicing process, and they are considered to be benign polymorphic alterations. Our studies help to clarify the aberrant splicing in BRCA1 and BRCA2 as well as provide information that can be used clinically to help counsel breast/ovarian cancer prone families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.