Genome-wide association studies (GWAS) have replicably identified multiple loci associated with population-based plasma lipid concentrations1-5. Common genetic variants at these loci together explain <10% of the total variation of each lipid trait4,5. Rare variants of individually large effect may contribute additionally to the “missing heritability” of lipid traits6,7, however it remains to be shown to what extent rare variants will affect lipid phenotypes. Here, we demonstrate a significant accumulation of rare variants in GWAS-identified genes in patients with an extreme phenotype of abnormal plasma triglyceride (TG) metabolism. A GWAS of hypertriglyceridemia (HTG) patients revealed that common variants in APOA5, GCKR, LPL and APOB genes were associated with the HTG phenotype at genome-wide significance. We subsequently resequenced protein coding regions of these genes and found a significant burden of 154 rare missense or nonsense variants in 438 HTG patients, in contrast to 53 variants in 327 controls (P=6.2X10-8); this corresponds to a carrier frequency of 28.1% of HTG patients and 15.3% of controls (P=2.6X10-5). Many rare variants were predicted in silico to have compromised function; additionally some had previously demonstrated dysfunctionality in vitro. Rare variants in these 4 genes explained 1.1% of total variation in HTG diagnoses. Our study demonstrates a marked mutation skew that likely contributes to disease pathophysiology in patients with HTG.
Recent genome-wide association (GWA) studies have identified new genetic determinants of complex quantitative traits, including plasma triglyceride (TG). We hypothesized that common variants associated with mild TG variation identified in GWA studies would also be associated with severe hypertriglyceridemia (HTG). We studied 132 patients of European ancestry with severe HTG (fasting plasma TG > 10 mmol/l), who had no mutations found by resequencing of candidate genes, and 351 matched normolipidemic controls. We determined genotypes for: GALNT2 rs4846914, TBL2/MLXIPL rs17145738, TRIB1 rs17321515, ANGPTL3 rs12130333, GCKR rs780094, APOA5 rs3135506 (S19W), APOA5 rs662799 (-1131T > C), APOE (isoforms) and LPL rs328 (S447X). We found that: (i) genotypes, including those of APOA5 S19W, APOA5 -1131T > C, APOE, GCKR, TRIB1 and TBL2/MLXIPL, were significantly associated with severe HTG; (ii) odds ratios for these genetic variables were significant in both univariate and multivariate regression analyses, irrespective of the presence or absence of diabetes or obesity; (iii) a significant fraction-about one-quarter-of the explained variation in disease status was associated with these genotypes. Therefore, common SNPs (single nucleotide polymorphisms) that are associated with mild TG variation in GWA studies of normolipidemic subjects are also associated with severe HTG. Our findings are consistent with the emerging model of a complex genetic trait. At the extremes of a quantitative trait, such as severe HTG, are found the cumulative contributions of both multiple rare alleles with large genetic effects and common alleles with small effects.
Numerous single nucleotide polymorphisms (SNPs) have been found in recent genome wide association studies (GWAS) to be associated with subtle plasma triglyceride (TG) variation in normolipidemic subjects. However, since these GWAS did not specifically evaluate patients with rare disorders of lipoprotein metabolism—‘hyperlipoproteinemia’ (HLP)—it remains largely unresolved whether any of these SNP determinants of modest physiological changes in TG are necessarily also determinants of most HLP phenotypes. To address this question, we evaluated 28 TG-associated SNPs from GWAS in 386 unrelated adult patients with one of five Fredrickson phenotypes (HLP types 2A, 2B, 3, 4 and 5) and 242 matched normolipidemic controls. We found that several SNPs associated with TG in normolipidemic samples, including APOA5 p.S19W and -1131T>C, TRIB1 rs17321515, TBL2 rs17145738, GCKR rs780094, GALNT2 rs4846914 and ANGPTL3 rs12130333, were significantly associated with HLP types 2B, 3, 4 and 5. The findings indicate that: (i) the TG-associated Fredrickson HLP types 2B, 3, 4 and 5 are polygenic traits; (ii) these Fredrickson HLP types share numerous genetic determinants among themselves; and (iii) genetic determinants of modest TG variation in normolipidemic population samples also underlie—to an apparently even greater degree—susceptibility to these rare HLP phenotypes. Thus, the TG-associated Fredrickson HLP types 2B, 3, 4 and 5, although historically considered to be distinct are actually complex traits sharing among them several common genetic determinants seen in GWAS of normolipidemic population samples.
Objective Earlier studies have suggested that a common genetic architecture underlies the clinically heterogeneous polygenic Fredrickson hyperlipoproteinemia (HLP) phenotypes defined by hypertriglyceridemia (HTG). Here, we comprehensively analyzed 504 HLP-HTG patients and 1213 normotriglyceridemic controls and confirmed that a spectrum of common and rare lipid-associated variants underlies this heterogeneity. Methods and Results First, we demonstrated that genetic determinants of plasma lipids and lipoproteins, including common variants associated with plasma triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) from the Global Lipids Genetics Consortium were associated with multiple HLP-HTG phenotypes. Second, we demonstrated that weighted risk scores composed of common TG-associated variants were distinctly increased across all HLP-HTG phenotypes compared with controls; weighted HDL-C and LDL-C risk scores were also increased, although to a less pronounced degree with some HLP-HTG phenotypes. Interestingly, decomposition of HDL-C and LDL-C risk scores revealed that pleiotropic variants (those jointly associated with TG) accounted for the greatest difference in HDL-C and LDL-C risk scores. The APOE E2/E2 genotype was significantly overrepresented in HLP type 3 versus other phenotypes. Finally, rare variants in 4 genes accumulated equally across HLP-HTG phenotypes. Conclusion HTG susceptibility and phenotypic heterogeneity are both influenced by accumulation of common and rare TG-associated variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.